Write chemical equations for the reactions that occur when solutions of the following substances are mixed:

a. HNO₂ (nitrous acid) and C₂H₇NO (aq) ethanolamine, a base.
b. H₃O+ and F-

Answers

Answer 1

a) HNO₂ + C₂H₇NO → N₂ + C₂H₆O + H₂O

b) H₃O⁺ + F⁻ → HF + H₂O

Answer 2

[tex]\large\color{lime}\boxed{\colorbox{black}{Answer : - }}[/tex]

a) HNO₂ + C₂H₇NO → N₂ + C₂H₆O + H₂O

b) H₃O⁺ + F⁻ → HF + H₂O


Related Questions

A complex ion that forms in solution has a structure that:____.
a. can be determined simply by stoichiometry.
b. can be predicted on the basis of electrical charge.
c. can only be determined experimentally.
d. cannot be determined.

Answers

Answer:

can only be determined experimentally.

Explanation:

In the early days of inorganic chemistry, the structure of complex ions remained a mystery hence the name ''complex''.

These ions appear to have structures that defied accurate elucidation. However, by diligent laboratory investigation, Alfred Werner was able to accurately determine the structure of cobalt complexes. As a result of this, he is regarded as a pathfinder in coordination chemistry.

Hence, the structure of complex ions can only be determined experimentally.

Answer:

c. can only be determined experimentally

Explanation:

It is not possible to know for certain the structure of a complex ion on the basis of stoichiometry or by the electrical charges on the components. The structure of the resulting complex ion can only be known by experiment.

If atom X had 3 valence electrons and atom Y had 7 valence electrons, the correct chemical formula for the ionic compound they would form is Choices: A) XY3 B) X3Y6 C) X2Y3 D) X3Y7

Answers

Answer:

A) XY3

In both of the atom, they want to have 8 valence electrons on the outer shell so they can become stable.

Critique this statement: Electrons can exist in any position
outside of the nucleus.

Answers

Answer:

However, there has to be 2 electrons on the first shell, and 8 on the others.

Explanation:

Hope this helps :)

Kamal was told by his mother to pour water through a thin cloth into another container to further purify the water.
a) What do you think will happen to the mud and sand when pouring the water? b)Do you think the water filtered by Kamal is safe to drink?​

Answers

[tex]\large{\underbrace{\underline{\color{magenta}{\bf{ANSWER}}}}}[/tex]

a].When sand is added to water it either hangs in the water or forms a layer at the bottom of the container. Sand therefore does not dissolve in water and is insoluble. It is easy to separate sand and water by filtering the mixture.

b]. The water filtered by kamal is not safe to drink .

If you run out of water, or cannot carry enough water with you for your entire trip, you may need to source drinking water from natural water sources.

Write a chemical equation for LiOH(aq) showing how it is an acid or a base according to the Arrhenius definition.

Answers

Answer:

LiOH(aq) → Li⁺(aq) + OH⁻(aq). 

We know that water is purified before it is supplied to our houses. Then why do we have filters installed in our houses? What do they serve?

Answers

Answer:

Water filters remove elements that cause drinking water to have an unpleasant taste and smell, such as lead, chlorine and bacteria. Home water filtration system will improve the overall purity, taste and smell of your drinking water. It also lowers the pH level of the water that you drink.

The correct geometry around oxygen in CH3OCH3 is
(a). linear. (b). bent. C). tetrahedral/(a). trigonal planar​

Answers

Explanation:

the force of the lone pairs from the bottom would cancel out the force of the lone pairs from the top. Thus, the molecule will be linear.

What functional group is found in an alcohol?
A. Ester
B. Amino
C. Carbonyl
D. Hydroxyl ​

Answers

Answer:

an alcohol is a Hydroxyl group due to the OH~ that is associated with it's molecules

The functional group found in an alcohol is Hydroxyl . Therefore, the correct option is option D.

What is functional group?

A functional group in organic chemistry is a substituent and moiety inside a molecule that triggers the molecule's distinctive chemical processes. No matter how the rest of a molecule is made up, the very same functional group would experience the same or a similar set of chemical events.

This permits the design of synthetic chemistry as well as the methodical forecasting of chemical reactions as well as the behaviour of chemical molecules. Other functional groups close by can affect a functional group's reactivity. Retrosynthetic analysis can be used to design organic synthesis by using functional group interconversion. The functional group found in an alcohol is Hydroxyl .

Therefore, the correct option is option D.

To know more about functional group, here:

https://brainly.com/question/29263610

#SPJ7

A mixture of methane and carbon dioxide gases contains methane at a partial pressure of 431 mm Hg and carbon dioxide at a
partial pressure of 504 mm Hg. What is the mole fraction of each gas in the mixture?
XCHA
Xc02

Answers

Answer:

XCH₄ = 0.461

XCO₂ = 0.539

Explanation:

Step 1: Given data

Partial pressure of methane (pCH₄): 431 mmHgPartial pressure of carbon dioxide (pCO₂): 504 mmHg

Step 2: Calculate the total pressure in the container

We will sum both partial pressures.

P = pCH₄ + pCO₂

P = 431 mmHg + 504 mmHg = 935 mmHg

Step 3: Calculate the mole fraction of each gas

We will use the following expression.

Xi = pi / P

XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461

XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539

For a different reaction, the plot of the reciprocal of concentration versus time in seconds was linear with a slope of 0.056 M-1 s -1 . If the initial concentration was 2.2 M, calculate the concentration after 100 seconds. Show your work.

Answers

Answer:

[tex]C_t=0.165M[/tex]

Explanation:

From the question we are told that:

Slope [tex]K=0.056 M-1 s -1[/tex]

initial Concentration [tex]C_1=2.2M[/tex]

Time [tex]t=100[/tex]

Generally the equation for Raw law is mathematically given by

[tex]\frac{1}{C}_t=kt+\frac{1}{C}_0[/tex]

[tex]\frac{1}{C}_t=0.056*100+\frac{1}{2.2}_0[/tex]

[tex]C_t=0.165M[/tex]

The second-order reaction is the reaction that depends on the reactants of the first or the second-order reaction. The concentration after 100 seconds will be 0.165 M.

What is the specific rate constant?

The specific rate constant (k) of the second-order reaction is given in L/mol/s or per M per s. It is the proportionality constant that gives the relation between the concentration and the rate of the reaction.

Given,

Slope (k)= 0.056 per M per s

Initial concentration of the reactant [tex](\rm C_{1})[/tex] = 2.2 M

Time (t) = 100 seconds

The concentration of the reaction after 100 seconds can be given by,

[tex]\rm \dfrac{1}{C_{t}} = kt + \dfrac{1}{C_{1}}[/tex]

Substitute values in the above equation:

[tex]\begin{aligned} \rm \dfrac{1}{C_{t}} &= 0.056 \times 100 + \dfrac{1}{2.02}\\\\&= 0.165 \;\rm M\end{aligned}[/tex]

Therefore, after 100 seconds the concentration is 0.165 M.

Learn more about the order of reaction here:

https://brainly.com/question/14810717

A compound with a molecular weight of about 64.47 g/mol was found to be 18.63 % of C, 1.56 % of H, 24.82 % of O, and 54.99 % of Cl by mass. Determine the molecular formula and draw the Lewis structure showing an accurate 3-D perspective. *Show your calculations

Answers

Answer:

See detailed explanation.

Explanation:

Hey there!

In this case, according to the given information, it turns out possible for us to solve this problem by firstly calculating the moles of each element, assuming those percentages are masses, so that we divide by their molar masses:

[tex]C=\frac{18.63}{12.01}=1.55\\\\H=\frac{1.56}{1.01} =1.55\\\\O=\frac{24.82}{16.00}=1.55\\\\Cl=\frac{54.99}{35.45}=1.55[/tex]

Then, we divide all of them by 1.55 to realize the empirical formula is:

[tex]CHOCl[/tex]

Whose molar mass is 64.47 g/mol, and therefore, since the molar mass of these two is the same, we infer the molecular formula is also CHOCl.

The Lewis structure is shown on the attached document, whereas, the central atom is C and it does complete its octet as well as both O and Cl.

Regards!

The Nernst equation at 20oC is:
Eion= 58 millvolts/z. [log10 (ion)out/(ion)in]

Calculate the equilibrium potential for Cl- if the concentration of Cl- outside of the cell is 100 and the concentration inside of the cell is 10 mmol/liter.

a. 58 millivolts
b. +58 millivolts
c. -116 millivolts
d. 0

Answers

Answer:

a. -58 millivolts

Explanation:

The given Nernst equation is:

[tex]E_{ion} = 58 millivolts /z \Big[ log_{10} \Big( \dfrac{[ion]_{out}}{[ion]_{in}}\Big) \Big]}[/tex]

The equilibrium potential given by the Nernst equation can be determined by using the formula:

[tex]E_{Cl^-} = \dfrac{2.303*R*T}{ZF} \times log \dfrac{[Cl^-]_{out}} {[Cl^-]_{in}}[/tex]

where:

gas constant(R) = 8.314 J/K/mol

Temperature (T) = (20+273)K

= 298K

Faraday constant F = 96485 C/mol

Number of electron on Cl = -1

[tex]E_{Cl^-} = \dfrac{2.303*8.314*298} {(-1)*(96845)} \times log \dfrac{100} {10}[/tex]

[tex]E_{Cl^-} = - 0.05814 \ volts[/tex]

[tex]\mathsf{E_{Cl^-} = - 0.05814 \times 1000 \ milli volts}[/tex]

[tex]\mathsf{E_{Cl^-} \simeq - 58\ milli volts}[/tex]

If 50.0 g of sulfuric acid and 40.0 grams of barium chloride are mixed, how many grams of sulfuric acid and how many grams of barium chloride remain after the double replacement reaction is complete?

Answers

After the double replacement reaction is complete 0 grams of BaCl₂ and 31.16 grams of H₂SO₄ will remain.

First, we will write the balanced equation for the reaction

H₂SO₄ + BaCl₂  → BaSO₄ + 2HCl

This means 1 mole of BaCl₂ is needed to react completely with 1 mole of H₂SO₄ to give 1 mole of BaSO₄ and 2 moles of HCl

From the question, 50.0g of sulfuric acid is mixed with 40.0 grams of barium chloride. To determine the quantity of each substance remaining after the complete reaction, we will first determine the number of moles present in each of the reactant.

For H₂SO₄

mass = 50.0g

Molar mass = 98.079 g/mol

From the formula

Number of moles = Mass / Molar mass

∴ Number of moles of H₂SO₄ = 50.0g / 98.079 g/mol

Number of moles of H₂SO₄ = 0.5098 mol

For BaCl₂

mass = 40.0 g

Molar mass = 208.23 g/mol

∴ Number of moles of BaCl₂ = 40.0g / 208.23 g/mol

Number of moles of BaCl₂ = 0.1921 mol

Since the number of moles of H₂SO₄ is more than that of BaCl₂, then H₂SO₄ is the excess reagent and BaCl₂ is the limiting reagent (that is, it will be used up completely during the reaction)

From the equation, 1 mole of H₂SO₄ is needed to completely react with 1 mole of BaCl₂

∴ 0.1921 mol of H₂SO₄ will be needed to completely react with 0.1921 mol of BaCl₂.

Therefore, after the reaction is complete, 0 mole (i.e 0 grams) of BaCl₂ will remain and (0.5098 mole - 0.1921 mole) of H₂SO₄ will remain.

Number of moles H₂SO₄ that will remain = 0.5098 mole - 0.1921 mole = 0.3177 moles

Now, we will convert this to grams

From the formula

Mass = Number of moles × Molar mass

Mass of H₂SO₄ that will remain = 0.3177 moles × 98.079 g/mol

Mass of H₂SO₄ that will remain = 31.1597 g

Mass of H₂SO₄ that will remain31.16 g

Hence, after the double replacement reaction is complete 0 grams of BaCl₂ and 31.16 grams of H₂SO₄ will remain.

Learn more here: https://brainly.com/question/6857557

PLEASE HELP ASAP
A total of 132.33g C3H8 is burned in 384.00 g O2. Use the following questions to determine the amounts of products formed.
• How many grams of CO2 and H2O will be produced? (2 points)
















b. If the furnace is not properly adjusted, the products of combustion can include other gases, such as CO and unburned hydrocarbons. If only 269.34 g of CO2 were formed in the above reaction, what would the percent yield be? (2 points)

Answers

A combustion reaction takes place in the presence of O2 (g). The
products of a complete combustion reaction are CO2 (g) and H2O
(g).

385 x 42.13 x 0.079 is (consider significant figures):

Answers

385 x 42.13 x 0.079 = 1281.38395

2FePO4+3 Na2so4--->Fe2(so4) + 2 Na3Po4 if i ise 25grams of iron iii phosphate 18.5 g iton what is my percent yeild?

Answers

Answer:

56%

Explanation:

If I use 25 grams of iron (III) phosphate and obtain 18.5 g of iron (III) sulfate, what is my percent yield?

Step 1: Write the balanced equation

2 FePO₄ + 3 Na₂SO₄ ⇒ Fe₂(SO₄)₃ + 2 Na₃PO₄

Step 2: Calculate the theoretical yield of Fe₂(SO₄)₃

The mass ratio of FePO₄ to Fe₂(SO₄)₃ is 301.64:399.88.

25 g FePO₄ × 399.88 g Fe₂(SO₄)₃/301.64 g FePO₄ = 33 g Fe₂(SO₄)₃

Step 3: Calculate the percent yield of Fe₂(SO₄)₃

We will use the following expression.

%yield = (experimental yield/theoretical yield) × 100%

%yield = (18.5 g/33 g) × 100% = 56%

Which of the following behaviors would best describe someone who is listening and paying attention? a) Leaning toward the speaker O b) Interrupting the speaker to share their opinion c) Avoiding eye contact d) Asking questions to make sure they understand what's being said

Answers

Answer:

a Leaning towards the speaker

Determine the [OH−] of a solution that is 0.115 M in CO32−. For carbonic acid (H2CO3), Ka1=4.3×10−7 and Ka2=5.6×10−11.

Answers

Answer:

[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.

Explanation:

Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.

Analysis:

            H₂CO₃(aq)     ⇄     H⁺(aq)    +    HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷

C(i)          0.115M                      0                  0

ΔC              -x                        +x                  +x

C(eq)    0.115M - x                   x                    x

            ≅ 0.115M

Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M

= 4.3 x 10⁻⁷  => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.

In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion  concentration, the hydroxide ion concentration is then calculated from

[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.

________________________________________________________

NOTE: The 2.32 x 10⁻⁴M  value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.

The concentration of hydroxide ion of given solution is 4.3 x 10⁻¹¹M.

How we calculate the [OH⁻]?

We can calculate the concentration of hydroxide ions as follow:

[OH⁻][H⁺] = 10⁻¹⁴

Given chemical reaction with ICE table shown as below:

                H₂CO₃(aq)     ⇄     H⁺(aq)    +    HCO₃⁻(aq)

Initial:             0.115                      0                    0

Change:           -x                        +x                  +x

Equilibrium:  0.115-x                   +x                  +x

Given that, Ka = 4.3 x 10⁻⁷

Equilibrium constant for this reaction is written as:

Ka = [H⁺][HCO₃⁻]/[H₂CO₃]

4.3 x 10⁻⁷ = x² / 0.115

x = 2.32 x 10⁻⁴M = [H⁺]

Now we calculate the concentration of hydroxide ion as:

[OH⁻][H⁺] = 10⁻¹⁴

[OH⁻] = 10⁻¹⁴ / 2.32 x 10⁻⁴ = 4.3 x 10⁻¹¹M

Hence, value of [OH⁻] is 4.3 x 10⁻¹¹M.

To know more about pH & pOH, visit the below ink:

https://brainly.com/question/24595796

If ionization energy of hydrogen atom is 13.6 eV then its ionization potential will be

Answers

Ionization potential and ionization energy are two terms used to describe the same thing.

The ionization potential of hydrogen atom is 13.6 eV

The ionization potential is the energy that is required to remove an electron from the neutral atom. It is the same as the ionization energy.

From the question, we can see that the ionization energy of the hydrogen atom is 13.6 eV, it also means that the ionization potential of the hydrogen atom is also 13.6 eV.

Therefore, If ionization energy of hydrogen atom is 13.6 eV then its ionization potential will be 13.6 eV

For more information see:

https://brainly.com/question/16243729

g When 2.50 g of methane (CH4) burns in oxygen, 125 kJ of heat is produced. What is the enthalpy of combustion (in kJ) per mole of methane under these conditions

Answers

Answer:

-800 kJ/mol

Explanation:

To solve the problem, we have to express the enthalpy of combustion (ΔHc) in kJ per mole (kJ/mol).

First, we have to calculate the moles of methane (CH₄) there are in 2.50 g of substance. For this, we divide the mass into the molecular weight Mw) of CH₄:

Mw(CH₄) = 12 g/mol C + (1 g/mol H x 4) = 16 g/mol

moles CH₄ = mass CH₄/Mw(CH₄)= 2.50 g/(16 g/mol) = 0.15625 mol CH₄

Now, we divide the heat released into the moles of CH₄ to obtain the enthalpy per mole of CH₄:

ΔHc = heat/mol CH₄ = 125 kJ/(0.15625 mol) = 800 kJ/mol

Therefore, the enthalpy of combustion of methane is -800 kJ/mol (the minus sign indicated that the heat is released).

Calculating the expected pH of the buffer solution: Given that the pKa for Acetic Acid is 4.77, calculate the expected pH of the buffer solutions using the Henderson-Hasselbalch equation and the concentrations of Acetic Acid and Acetate added to the 250 ml Erlenmeyer flask: pH

Answers

Answer:

[tex]pH=4.77[/tex]

Explanation:

From the question we are told that:

pKa for Acetic Acid [tex]pK_a= 4.77[/tex]

Therefore

For Equal Concentration of acetic acid and acetatic ion

[tex]CH_3COOH=CH_3COO^-[/tex]

Generally the Henderson's equation for pH value is mathematically given by

[tex]pH=pK_a+log\frac{base}{acid}[/tex]

[tex]pH=4.77+log\frac{CH_3COO^-}{CH_3COOH}[/tex]

[tex]pH=4.77+log1[/tex]

[tex]pH=4.77[/tex]

You are titrating 24.3 mL of 2.00 M HCl with 1.87 M NaOH. How much NaOH do you expect to have added when you reach the equivalence point?

26.0 mL

15.4 mL

13.4 mL

Answers

Answer:

26mL

Explanation:

NaOH+HCl= NaCl+H2O

nHCl=0.0243*2=0.0486

nNaOh=nHCl

VNaOH=0.0486/1.87=0.026l=26ml

Answer:

26.0 mL

Explanation:

5 points ) Which of the following is a benefit of using email to communicate at work ? a) You can express yourself in a limited number of characters b) You don't have to worry about using proper grammar. c) You always get a response right away. d ) You can reach a large audience with one communication .

Answers

Answer:

C

Explanation:

Carbon dioxide gas is collected at 27.0 oC in an evacuated flask with a measured volume of 30.0L. When all the gas has been collected, the pressure in the flask is measured to be 0.480atm. Calculate the mass and number of moles of carbon dioxide gas that were collected.

Answers

Answer:

[tex]M_{CO_2}= 25.7g[/tex]

Explanation:

From the question we are told that:

Temperature [tex]T=27.0[/tex]

Volume [tex]V=30L[/tex]

Pressure [tex]P=0.480atm[/tex]

Generally the equation for Ideal gas is mathematically given by

PV=nRT

Therefore

[tex]n=\frac{0.480 x 30}{0.08205 x 300}[/tex]

[tex]n=0.59moles[/tex]

Generally Mass of CO2 is given as

[tex]M_{CO_2}= 0.59 * 44 g/mol[/tex]

[tex]M_{CO_2}= 25.7g[/tex]

Urea, CH4N2O (s), is manufactured from NH3 (g) and CO2 (g). H2O (l) is another product of this reaction. An experiment is started with 2.6 grams of NH3 (g) added into a reaction vessel with CO2 (g).
Write the balanced equation for this reaction, being sure to include physical states. Based on the balanced equation above, calculate the following:
a. the theoretical yield of urea in grams that can be made from the NH3
b. the actual amount of urea made if the percent yield for this reaction is 34%.

Answers

Answer:

a. 4.41 g of Urea

b. 1.5 g of Urea

Explanation:

To start the problem, we define the reaction:

2NH₃ (g) +  CO₂ (g) → CH₄N₂O (s)  +  H₂O(l)

We only have mass of ammonia, so we assume the carbon dioxide is in excess and ammonia is the limiting reactant:

2.6 g . 1mol / 17g = 0.153 moles of ammonia

Ratio is 2:1. 2 moles of ammonia can produce 1 mol of urea

0.153 moles ammonia may produce, the half of moles

0153 /2 = 0.076 moles of urea

To state the theoretical yield we convert moles to mass:

0.076 mol . 58 g/mol = 4.41 g

That's the 100 % yield reaction

If the percent yield, was 34%:

4.41 g . 0.34 = 1.50 g of urea were produced.

Formula is (Yield produced / Theoretical yield) . 100 → Percent yield

Select the structure of a compound C6H14 with a base peak at m/z 43.
A) CH3CH2CH2CH2CH2CH3
B) (CH3CH2)2CHCH3
C) (CH3)3CCH2CH3
D) (CH3)2CHCH(CH3)2
E) None of these choices.

Answers

D I think that’s about right

The  structure of a compound C₆H₁₄ with a base peak at m/z 43 is none of these .

What is a compound?

Compound is defined as a chemical substance made up of identical molecules containing atoms from more than one type of chemical element.

Molecule consisting atoms of only one element is not called compound.It is transformed into new substances during chemical reactions. There are four major types of compounds depending on chemical bonding present in them.They are:

1)Molecular compounds where in atoms are joined by covalent bonds.

2) ionic compounds where atoms are joined by ionic bond.

3)Inter-metallic compounds where atoms are held by metallic bonds

4) co-ordination complexes where atoms are held by co-ordinate bonds.

They have a unique chemical structure held together by chemical bonds Compounds have different properties as those of elements because when a compound is formed the properties of the substance are totally altered.

Learn more about compounds,here:

https://brainly.com/question/13516179

#SPJ6


Which of the following ions is the less likely to be formed?
A) Li+3
B) Na+
C) I-
D) Sr2+
Ε) Η+

Answers

Answer:

Li^3+

Explanation:

The electronic configuration of lithium is ; 1s2 2s1. This means that lithium has one electron in its outermost shell and two core electrons.

We know that it is difficult to remove these core electrons during ionization. Lithium belongs to group 1 hence Li^+ is formed more easily.

It is very difficult to form Li^3+ because it involves loss of core electrons which requires a lot of energy.

Consider the following titration for these three questions:

1.00 L of 2.00 M HCl is titrated with 2.00 M NaOH.

a. How many moles of acid are equal to one equivalent in this titration?
b. How many moles of HCl are found in solution at the halfway point of the titration?
c. How many liters of base will be needed to reach the equivalence point of the titration?

Answers

Answer:

a. 1 mole of acid is equal to one equivalent.

b. 1.00 moles of HCl are found.

c. 1L of 2.00M NaOH is needed to reach the equivalence point

Explanation:

HCl reacts with NaOH as follows:

HCl + NaOH → NaCl + H2O

Where 1 mole of HCl reacts with 1 mole of NaOH. The reaction is 1:1

a. As the reaction is 1:1, 1 mole of acid is equal to one equivalent

b. The initial moles of HCl are:

1.00L * (2.00moles HCl / 1L) = 2.00 moles of HCl

At the halfway point, the moles of HCl are the half, that is:

1.00 moles of HCl are found

c. At equivalence point, we need to add the moles of NaOH needed for a complete reaction of the moles of HCl. As the moles of HCl are 2.00 and the reaction is 1:1, we need to add 2.00 moles of NaOH, that is:

2.00moles NaOH * (1L / 2.00mol) =

1L of 2.00M NaOH is needed to reach the equivalence point

all question are compulsory​

Answers

Answer:

is this question or you just asking I can't understand.

The Answer to your question is no

3. Suppose you wanted to design an experiment to test the composition of a mixture that includes sodium phenoxide (NaC6H5O). You know that this solid mixture contains both the NaC6H5O and some inert NaCl, but do not know how much of each is present. You decide to test the composition by titrating with 0.100-M HCl. a. If a 1.000-g sample is 25% NaC6H5O by mass, how many mL of 0.100-M HCl would be required to reach the equivalence point of the titration

Answers

Answer:

21.5mL of a 0.100M HCl are required

Explanation:

The sodium phenoxide reacts with HCl to produce phenol and NaCl in a 1:1 reaction.

To solve this question we need to find the moles of sodium phenoxide. These moles = Moles of HCl required to reach equivalence point and, with the concentration, we can find the needed volume as follows:

Mass NaC6H5O:

1.000g * 25% = 0.250g NaC6H5O

Moles NaC6H5O -116.09g/mol-

0.250g NaC6H5O * (1mol/116.09g) = 2.154x10⁻³ moles = Moles of HCl required

Volume 0.100M HCl:

2.154x10⁻³ moles HCl * (1L/0.100mol) = 0.0215L =

21.5mL of a 0.100M HCl are required
Other Questions
The tools used to craft chairs in a furniture factory are an example of which factor of production? ASAP!!!a. entrepreneurshipb. laborc. capitald. land Find all solutions of cos()=1/2 on the interval [ What is the chemical formula for iron(ii) hydroxide? femc033-1. Jpgoh fe(oh)mc033-2. Jpg feohmc033-3. Jpg feoh. Which of the following correctly sequences the continuum from language family to dialect? Select the graph of the equation y + x + 3 = 0. the idea of popular sovereignty originated as a justification for 5 : 1/3 in its simplest form please help with this math question In kite WALT, mELA=48. Identify mWAL.mWAL = 42mWAL = 84mWAL = 48mWAL = 90 what california mountain range was the source of the gold rush? 1st question: Which is an example of a short-term health goal? A: Learning to ride a bike B: Riding your bike more this week C: Getting better grades in school D:Saving to buy a bike2nd question:Which one of the following is a long-term health goal? A: Practicing handwriting five minutes a day B: Getting better grades in school C: Sweeping the floors after school D: Setting the table for a week In the third stanza, the sun is likeliest to symbolize... A. light B. hope C. death D. knowledge PLEASE HELP!! ASAP THANKS I forgot this within 2 seconds ;-; hurry pleas!!!! Read the excerpt from the short story, The Farmer and the Donkey: Life is going to shovel dirt on you, all kinds of dirt. The trick to getting out of the well is to shake it off and take a step up. Each of our troubles is a stepping stone. We can get out of the deepest wells just by not stopping, never giving up! Shake it off, and take a step up. What trait is best characterized in this excerpt? a. sadness b. frustration c. resilience d. confidence Can someone please give me the (Answers) to this? ... please ... what is a fraction between 2/3 and 4/7 The gas in a 250. mL piston experiences a change in pressure from 1.00 atm to 2.25 atm. What is the new volume (in mL) assuming the moles of gas and temperature are held constant? A gas occupies 900 mL at a temperature of 27 C. What is the volume at 132 C? How were boycotts effective in changing British economic policies