Answer:
29.4 m
Step-by-step explanation:
From the graph
You can clearly infer from the graph that the initial height of the cannon ball, before it is launched is 29.4 mJust find t = 0, and see where the line of the graph intersects the y-axis, which represents height of the cannon ball w.r.t time.From the equation
An even simpler method is substitute t = 0 into the equation for the motion of the cannon ballh(0) = -4.9(0)² + 24.5(0) + 29.4h(0) = 29.4 m17. Which of the following transformations does NOT preserve congruence?
(x,y) - (y + 2,-x-1)
(x,y) - (x-3, y-2)
(x,y) -- (0.5x + 1,0.5y-2)
(x,y) - (-y-3,x+5)
(x,y) - (y + 2,-x-1) is the transformation that DOES NOT maintain congruence.
what is transformation ?An item in one space is mapped to another using a function known as a transformation in mathematics. A geometric shape or other mathematical object is altered by this method by shifting its location, direction, or size. Geometric qualities including symmetry, congruence, and resemblance are studied using transformations. Objects are frequently transformed through translations (moving), rotations (turning), reflections (flipping), and dilations (resizing an object). In other branches of mathematics and science, including physics, calculus, and linear algebra, transformations are also employed.
given
(x,y) - (y + 2,-x-1) is the transformation that DOES NOT maintain congruence.
In other branches of mathematics and science, including physics, calculus, and linear algebra, transformations are also employed.
To know more about transformation visit :-
https://brainly.com/question/11709244
#SPJ1
Find the value if x. PLS HELP ASAP
Answer: 90°
Step-by-step explanation:
(x°+90°)=180°(being the sum of angles of the triangle)
or, x°= 180°-90°
or x°= 90°
The range of the function f(x) = x + 5 is {7, 9}. What is the function’s domain? A. {2, 4} B. {-2, -4} C. {12, 14} D. {-12, -14} E. {0, 5}
Answer:
The answer is A. {2,4}
Step-by-step explanation:
I took the test on edmentum. 100%
Find y.
B
C
Зу
A
8 D
м
2
4
15
10
Answer:
y=4
Step-by-step explanation:
The question is asking what is the value of y:
Since all lengths have a dash on them they are all equal :
So 3y = y+8
3y = y + 8
First we subtract y from both sides:
3y-y = y+8-y
2y = 8
Divide both sides by 2:
2y÷2 = 8÷2
y = 4
Suppose that the volume of a right circular cylinder is 288 cubic meters and the area of its base is 16 square meters. What is the height of the cylinder?
A. 12 m
B. 16 m
C. 18 m
D. 14 m
Answer: 18
Step-by-step explanation:
288 / 16 = 18
Answer:
C) 18 m
Step-by-step explanation:
A family of 6 is going to the fair. They have a coupon for $2.50 off each ticket. If they pay $96 for all their tickets, and each ticket costs the same amount, how much does a ticket, t, cost without the coupon?
Answer:
6x=46.50
Step-by-step explanation:
Bilquis is trying to find the height of a radio antenna on the roof of a local building. She stands at a horizontal distance of 29 meters from the building. The angle of elevation from her eyes to the roof ((point AA)) is 17∘
, and the angle of elevation from her eyes to the top of the antenna ((point BB)) is 31∘
. If her eyes are 1.51 meters from the ground, find the height of the antenna ((the distance from point AA to point BB)). Round your answer to the nearest meter if necessary.
Using relations in a right triangle, it is found that the height of the antenna is of 10 m.
What are the relations in a right triangle?The relations in a right triangle are given as follows:
The sine of an angle is given by the length of the opposite side to the angle divided by the length of the hypotenuse.The cosine of an angle is given by the length of the adjacent side to the angle divided by the length of the hypotenuse.The tangent of an angle is given by the length of the opposite side to the angle divided by the length of the adjacent side to the angle.In this problem, the vertical height from her eyes to the top of the antenna is the side opposite to the angle of 17º, while the adjacent side is the horizontal distance of 29 m, hence:
[tex]\tan{17^\circ} = \frac{h}{29}[/tex]
[tex]h = 29\tan{17^\circ}[/tex]
[tex]h = 8.87[/tex]
Adding the eye height:
h = 8.87 + 1.51 = 10.38 m.
Rounding to the nearest meter, the height of the antenna is of 10 m.
More can be learned about relations in a right triangle at https://brainly.com/question/26396675
Answer:
9
Step-by-step explanation:
I just took the test.
A line passes through the point (-9, -3) and has a slope of 2.
Write an equation in slope-intercept form for this line.
Answer:
Step-by-step explanation:
hello :
note :
Use the point-slope formula.
y - y_1 = m(x - x_1) when : x_1= -9 y_1= -3
m= 2 (the slope)
an equation in the point-slope form is : y +3 = 2(x+9)
means : y+3 =2x +18
an equation in slope-intercept id : y=2x+15
Factor the trinomial 6x^{2} + 5x - 25. Which of the following is a factor?
Answer:
its (3x-5)
Step-by-step explanation:
Answer:
C. (3x - 5)
Step-by-step explanation:
1. Find a solution pair that gives the sum of b (5):
-10 + 15 = 5
2. Break the expression into groups:
(6x² - 10x) + (15x - 25)
3. Factor out the common factor in each group:
2x(3x - 5) + 5(3x - 5)
4. Factor out the common pair (3x - 5) using the distributive property:
(3x - 5)(2x + 5)
hope this helps!
Which expression has a value of -22?
−5 × 2 − 12
8 − (−3) +33 ÷ (−3)
−3 + (−2) − (−8) −1
−6 × 2 − (−15)
Answer:
(-5)*2 - 12
Step-by-step explanation:
First multiply (-5) and 2. Then (-10) and (-12) have same signs ie. neagtive .
If two integers have same sign, add and the result will have the sign of the both integers.
(-5)*2 - 12 = -10 - 12
= -22
Maria wrote the equation log (startfraction x over 2 endfraction) log (startfraction 20 over x squared endfraction) = log 8 what is the solution to maria’s equation?
The solution to maria’s equation [tex]\rm log\frac{x}{2} +log\frac{20}{x^{2} } = log8[/tex] by using the properties of the logarithm is 5/4.
What is a logarithm?A logarithm is the exponentiation inverse function that can be expressed by the exponent or power to which a base must be raised to yield a number.
It is given that
[tex]\rm log\frac{x}{2} +log\frac{20}{x^{2} } = log8[/tex]
Using properties of a logarithm, we get
[tex]\rm log x + log y=logxy[/tex]
[tex]\rm log[\frac{x}{2} \times\frac{20}{x^{2} }] = log8\\\rm log[\frac{10}{x}] = log8[/tex]
on comparing
10/x = 8
x = 10/8
x = 5/4
Hence, the solution to maria’s equation [tex]\rm log\frac{x}{2} +log\frac{20}{x^{2} } = log8[/tex] is 5/4.
Learn more about logarithm;
https://brainly.com/question/20785664
Answer:
C
Step-by-step explanation:
C) 5/4
PLS HELP OFFERING BRAINLIEST+20 POINTS! I RLLLLLLLLLYYYYYYY NEED HELP!
Answer:
c and d
Step-by-step explanation:
hope it helps bud
Calculate the perimeter of the figure shown below.
5 ft
15 ft
10 ft
18 ft
Answer:
its c
Step-by-step explanation:
think about it for a second
Tallulah's family took a road trip to the Grand Canyon. Tallulah slept for the last 129 miles of the trip. If the total length of the trip was 300 miles, what percentage of the total trip had they traveled when Tallulah fell asleep?
When Tallulah fell asleep, the family had already traveled 57% of the total trip.
A percentage is a way of expressing a number as a fraction of 100. It is often used to describe proportions, ratios, or rates. For example, if 20 out of 100 people in a room are wearing red shirts, we can say that 20% of the people are wearing red shirts.
If Tallulah slept for the last 129 miles of the trip, it means that the family had already traveled 300 - 129 = 171 miles before she fell asleep.
To calculate the percentage of the total trip that they had traveled when Tallulah fell asleep, we can use the following formula:
Percentage = (Part ÷ Whole) x 100
Where "Part" is the number of miles the family had traveled before Tallulah fell asleep (171 miles) and "Whole" is the total length of the trip (300 miles).
Percentage = (171 ÷ 300) x 100
Percentage = 0.57 x 100
Percentage = 57%
Therefore, when Tallulah fell asleep, the family had already traveled 57% of the total trip.
To know more about the Percentage visit:
brainly.com/question/30348137
#SPJ1
You received an $40,000 bonus, which was 18% of your salary. What is the percentage of your salary is this bonus?
Answer:
salary: $40,000÷18% = $ 222. 222 22
222 222 22÷40,000×100%
= 555.56%
A bag with 6 marbles has 1 yellow marble 2 blue marbles and 3 red marbles. A marble is chosen from the bag at random what is the probability that it is yellow ? write your answer as a fraction in simplest form
A fraction/probability is created by taking what we want and putting that over the total.
In this case, we want yellow out of the total number of marbles.
Yellow Marbles = 1
Total Marbles = 6 + 1 + 2 + 3 = 12
Probability/Fraction = 1 / 12
Hope this helps!
A triangular prism is 15 yards long and has a triangular face with a base of 12.9 yards and a height of 10.3 yards. what is the volume of the triangular prism?
Answer:
Step-by-step explanation:
Area of the base = 1/2 * B * h
B: 12.9
h = 10.3
Area of the face = 1/2 * 12.9 * 10.3
Area of the face = 66.435
Volume = Triangle * height
Triangle = 66.435 yd^2
Height = 15 yd
Volume = 66.435 * 15
volume = 996.525
I think this should be rounded to one decimal place: 996.5
How does your Web browser get a file from the Internet? Your computer sends a request
for the file to a Web server, and the Web server sends back a response. For one
particular Web server, the time X (in seconds) after the start of an hour at which a
randomly selected request is received has the uniform distribution shown in the figure. in
The probability that the request is received by this server within the first 5 minutes (300 seconds) after the hour is 0.0833 or 8.33%.
How does your Web browser get a file from the Internet?Your computer sends a request for the file to a Web server, and the Web server sends back a response.
For one particular Web server, the time X (in seconds) after the start of an hour at which a randomly selected request is received has the uniform distribution shown in the figure.
The probability of finding value less than the X is,
[tex]P(X < x)=\dfrac{x-a}{b-a}[/tex]
Here, a and b are two bonds of uniform distribution.
The probability distribution of X can be modeled by a uniform density curve on the interval from 0 to 3600 seconds, as shown in the given figure.
The probability that the request is received by this server within the first 5 minutes (300 seconds) after the hour has to be found out. Thus,
[tex]P(X < x)=\dfrac{300-0}{3600-0}\\P(X < x)=0.0833\\P(X < x)=8.33\%[/tex]
Thus, the probability that the request is received by this server within the first 5 minutes (300 seconds) after the hour is 0.0833 or 8.33%.
Learn more about the probability distribution here;
https://brainly.com/question/9385303
#SPJ1
Helppp
For triangle ABC below, find missing side length BC and both missing angle measures
Answer:
3
Step-by-step explanation:
use the pythagoreum therory
Factor completely 9x3 + 36x2 - x - 4.
(3x + 4)(3x – 4)(x + 1)
(3x + 1)(3x - 1)(x + 4)
(9x2 - 1)(x + 4)
-
(3x + 1)(3x – 1)(x – 4)
-
The correct answer is: (3x + 1)(3x - 1)(x + 4)
Tony bought a printer on sale for 45. The original price was 60 . What is the percent decrease of the price of the load ?
Answer:
25%
Step-by-step explanation:
STEP 1:
Find the difference between the two values
e.g 60-45=15
STEP 2
Divide the difference by the original value
e.g 15/60=1/4
STEP 3
Convert 1/4 into a percentage
e.g 1/4=0.25=25%
a listing for a home for sale is shown as follows: “3/2/1 house for sale. price 140000” what does “3/2/1” mean
Answer:
A
Step-by-step explanation:
Usually when purchasing a house you refer to the bedroom then the bathroom then potentially your garden width/height or you garage
I need 16,18, and 20 answered thank you
16:
4b(5b-3)-2(b²-7b-4)
= 20b²-12b-2b²+14b+8
=18b²+2b+8
18:
3m(3m+6)-3(m²+4m+1)
= 9m²+18m-3m²-12m-3
=6m²+6m-3
20:
4x(3x+2)-3x×2x
=12x²+8x-6x²
=6x²+8x
What is the correct answer?
Answer:
B
Step-by-step explanation:
When multiplying exponents with the same base, you add the powers together.
In B, that is exactly what they are showing when they do:
[tex]2^{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}[/tex]
(Can somebody please help me!) (NO links!)
What do I put!
Answer:
x = 16angle = 48°Step-by-step explanation:
The marked angles have a sum of 90°. This lets you find the unknown angle and the value of x.
42° +3x° = 90°
3x° = 48° . . . . . . . . . subtract 42°. This is the value of the unknown angle
x = 16 . . . . . . divide by 3°
__
The value of x is 16.
The measure of the missing angle is 48.
A 5-year project will require an investment of $100 million. this comprises of plant andmachinery worth $80 million and a net working capital of $20 million. the entire outlay willbe incurred at the project’s commencement.financing for the project has been arranged as follows:80,000 new common shares are issued, the market price of which is $500 per share. theseshares will offer a dividend of $4 per share in year 1, which is expected to grow at a rate of 9%per year for an indefinite tenure.remaining funds are borrowed by issuing 5-year, 9% semi-annual bonds, each bond having aface value of $1,000. these bonds now have a market value of $1,150 each.at the end of 5 years, fixed assets will fetch a net salvage value of $30 million, whereas the networking capital will be liquidated at its book value.the project is expected to increase revenues of the firm by $120 million per year. expenses,other than depreciation, interest and tax, will amount to $80 million per year. the firm is subjectto a tax rate of 30%plant and machinery will be depreciated at the rate of 25% per year as per the written-downvalue method.you are required to:1. compute the cost of equity for this project (2 marks)2. compute the relevant cost of debt for this project. (2 marks)3. compute the wacc (4 marks)4. determine the initial cash flow for the project. (1 mark)5. determine the earnings before taxes for years 1 through 5 (2 marks)6. compute the ocf for years 1 through 5 (3 marks)
Answer:
1. The cost of equity can be derived from the share price, which is the present value of the expected dividend one year from now(using the present value of growing perpetuity) as shown below:
share price=D1/(r-g)
share price=$500
D1=expected dividend one year from now=$4
r=cost of equity=unknown
g=constant growth rate=9%
$500=$4/(r-9%)
$500*(r-9%)=$4
r-9%=$4/$500
r=($4/$500)+9%
r=9.8
the Cost of Equity for the project is 9.8%
2. Compute the relevant cost of debt for this project is 5.53%
Market Value= 1,150
Face Value= 1,000
Term= 5 years, 10 semi-annual periods
Coupon Rate= 9%, 4.5% semi-annual rate
Tax Rate= 30%
N=10(semiannual coupons in 5 years)
PMT=45(semiannual coupon=face value*coupon rate/2=$1000*9%/2=$45)
PV=-1150(current market price)
FV=1000(face value of the bond is $1,000)
CPT(press compute)
I/Y=2.762766%(semiannual yield)
annual yield=2.762766%*2
annual yield=5.53%
3. The weighted average cost of capital is the sum of equity and the after-tax cost of debt multiplied by their respective market value weights
WACC=(cost of equity*weight of equity)+(after-tax cost of debt*weight of debt)
cost of equity=9.80%
the market value of equity raised=shares issued*market price of the share
the market value of equity raised=80,000*$500
the market value of equity raised=$40 million
weight of equity=market value of equity/total amount raised
weight of equity=$40 million/$100 million
weight of equity=40.00%
weight of debt=1-weight of equity
weight of debt=1-40.00%
weight of debt=60.00%
after-tax cost of debt=bond yield*(1-tax rate)
the after-tax cost of debt=5.53%*(1-30% )
the after-tax cost of debt=3.87%
WACC=(9.80%*40.00%)+(3.87%*60.00%)
WACC= 6.2426% or 6.24%
Therefore the WACC is 6.2426% or 6.24% rounded off to 2decimal place
4. Determine the initial cash flow for the project =$100 million
The initial cash outlay is the sum of the plant and machinery and net working capital investment required to commence the project
Plant and machinery= $80 million
Networking capital = $20 million
Total Initial Cash Flow= $100 million
5. Determine the earnings before taxes for years 1 through 5
Year
1 2 3 4 5
Revenue
120,000,000 120,000,000 120,000,000 120,000,000 120,000,000
Expenses
(80,000,000) (80,000,000) (80,000,000) (80,000,000) (80,000,000)
Depreciation (20,000,000) (15,000,000) (11,250,000) (8,437,500) (6,328,125)
EBT
20,000,000 25,000,000 28,750,000 31,562,500 33,671,875
Step-by-step explanation:
5. Depreciation schedule:
Year 1 = 80 × 25% = 20
Year 2 = (80-20) × 25% = 15
Year 3 = (80-20-15) × 25% = 11.25
Year 4 = (80-20-15-11.25) × 25% = 8.4375
Year 5 = (80-20-15-11.25-8.4375) × 25% = 6.328125
EBT = revenue - Expenses - depreciation
Year 1 = 120 - 80 - 20 = 20 Million
Year 2 = 120-80- 15 = 25 Million
Year 3 = 120-80- 11.25 = 28.75 Million
Year 4 = 120-80- 8.4375 = 31.5625 Million
Year 5 = 120-80- 6.328125 = 33.671875Million
The cost of equity of the project through the use of Gordan's formula will be 9.87%.
How to compute the cost of equity?It should be noted that the price of stock is computed thus:
= Previous dividend + Growth / Cost of equity - Growth
Po = Do + g/Ke - g
500 = 4 + 9%/Ke - 9%
500 = 4 + (0.09 × 4) / Ke - 9%
500 = 4.36/Ke - 9%
500(Ke - 9%) = 4.36
500Ke = 4.36 + 45
500Ke = 49.36
Ke = 49.36/500
Ke = 9.87%
The cost of debt will be:
= Interest rate (1 - Tax rate)
= 9% × (1 - 30%)
= 9% × 0.7
= 6.30%
The amount of the cost of debt will be:
= $1000 × 6.30%
= $63.00
Learn more about cost of equity on:
https://brainly.com/question/14041475
can someone help me with this
Answer:
B. across the y-axis
Step-by-step explanation:
The line of reflection is the perpendicular bisector of the segment between the orginal point and its image. If you plot the two points, you see that the y-axis is that bisector.
The point was reflected across the y-axis.
__
Additional comments
Changing the sign of the x-coordinate means a point that was some distance on one side of the y-axis is now that same distance on the other side. That is, the y-axis is the line of reflection when the sign of x changes.
Similarly, the x-axis is the line of reflection when the sign of y changes.
(x, y) ⇒ (-x, y) . . . . reflection across the y-axis
(x, y) ⇒ (x, -y) . . . . reflection across the x-axis
__
Changing the signs of both coordinates (in either order) is effectively a reflection across the origin. There are other names for this reflection, too.
(x, y) ⇒ (-x, -y) . . . . reflection across both axes, across the orign, rotation 180°
Which algebraic expression is equivalent to this expression?
9(3x - 12) + 9x
A.
36x - 12
B.
18x + 108
C.
36x - 108
D.
18x - 108
Use the Distributive Property, which states the following:-
[tex]\bigstar{\bf{a(b+c)=ab+ac}[/tex]
where
we distribute a by multiplying it times b and c
In this case, we should distribute 9:-
9(3x-12)+9x
27x-108+9x
Combine Like Terms:-
[tex]\longrightarrow\sf{36x-108}[/tex]
note:-Hope everything is clear; if you need any clarification/explanation, kindly let me know, and I will comment and/or edit my answer :)
Answer:
C. 36x + 108
Step-by-step explanation:
Our expression :
9(3x - 12) + 9xExpanding :
#1) Open the bracket applying the distributive property.
9(3x - 12) + 9x9(3x) - 9(12) + 9x27x - 108 + 9x#2) Combine like terms.
27x + 9x - 10836x + 108The option with this answer is C.Find the area of a circle with a radius of 21 inches. Use 22/7
for pi.
Answer:
Area of circle=πr^2
Step-by-step explanation:
Area of circle=πr^2
=22/7*21^2
=22/7*441
=9702/7
=1386 sq.inch
A family goes to a fundraiser for their local library. Each ticket is $12, and they give a single donation of $10
at the end of the evening. There are six members of the family, and they spend a total of $82. Which equatic
could represent this situation?
Answer:
x=12y + 10 or even just entirely solved... 82=12(6) +10
Step-by-step explanation:
Answer:
ImnotI'm not sure
this is the same im on
Step-by-step explanation: