Answer:
1. 2x2x2x3
Step-by-step explanation:
Let's do process of elimination.
2. 2x2x3
2x2=4 4x3=12
2 is false.
3. 8x3
8x3=24
3 is true, but 8 is not a prime number.
4. 6x4
6x4=24
4 is true, but 6 is not a prime number.
This leaves 1. 2x2x2x3.
1. 2x2x2x3
2x2=4 2x3=6 6x4=24
1 is true, and 2 and 3 are prime numbers. So, the answer is 1.
-hope it helps
Answer:
1. 2x2x2x3
Step-by-step explanation:
Prime factorization is defined as a way of finding the prime factors of a number, such that the original number is evenly divisible by these factors.
[tex]24\:\mathrm{divides\:by}\:2\\\\\quad \:24=12\cdot \:2[/tex]
[tex]12\:\mathrm{divides\:by}\:2\\\\\quad \:12=6\cdot \:2[/tex]
[tex]6\:\mathrm{divides\:by}\:2\quad\\\\ \:6=3\cdot \:2[/tex]
[tex]2, 6\:\mathrm{divides\:by}\:2\quad \\\\\:6=3\cdot \:2[/tex]
What is the equation of the line that passes through the point (6, -6) and has a slope
of – 5/3?
Answer:
y = -5/3x + 4Step-by-step explanation:
Use the point-slope equation:
y - y₁ = m(x - x₁), where (x₁, y₁) is the given pointThe line is:
y - (-6) = -5/3(x - 6) y + 6 = -5/3x + 10y = -5/3x + 4Calculate the sum and enter it below.
-4 + 16
Answer here
Answer:
12
Step-by-step explanation:
because 16 + -4 is like 16-4 which is 12
The median age (in years) of the U.S. population over the decades from 1960 through 2010 is given by
f(t) = −0.2176t3 + 1.962t2 − 2.833t + 29.4 (0 ≤ t ≤ 5)
where t is measured in decades, with t = 0 corresponding to 1960.
(a) What was the median age of the population in the year 1970?
(b) At what rate was the median age of the population changing in the year 1970?
(c) Calculate f ''(1).
Considering the given function, we have that:
a) 28.31 years.
b) 0.3382 years a decade.
c) 2.6184.
What is the function?The median age of the U.S. population in t decades after 1960 is:
f(t) = -0.2176t³ + 1.962t² - 2.833t + 29.4.
1970 is one decade after 1960, hence the median was:
f(1) = -0.2176 x 1³ + 1.962 x 1² - 2.833 x 1 + 29.4 = 28.31 years.
The rate of change was is the derivative when t = 1, hence:
f'(t) = -0.6528t² + 3.924t - 2.933
f'(1) = -0.6528 x 1² + 3.924 x 1 - 2.933 = 0.3382 years a decade.
The second derivative is:
f''(t) = -1.3056t + 3.924
Hence:
f''(1) = -1.3056 x 1 + 3.924 = 2.6184.
More can be learned about functions at https://brainly.com/question/25537936
#SPJ1
The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms. Statistical analysis of the output suggests that the resistances can be approximated by a normal distribution with known standard deviation of 0.005 ohms. We are interested in testing the hypothesis that the resistors conform to the specifications.
Requied:
a. Determine whether a random sample of 10 resistors yielding a sample mean of 0.152 ohms indicates that the resistors are conforming. Use alpha = 0.05.
b. Calculate a 95% confidence interval for the average resistance. How does this interval relate to your solution of part (a)?
Answer:
a) The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.
b) The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.
Step-by-step explanation:
Question a:
The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms.
At the null hypothesis, we test if this is the average resistance, that is:
[tex]H_0: \mu = 0.15[/tex]
We are interested in testing the hypothesis that the resistors conform to the specifications.
At the alternative hypothesis, we test if it is not conforming, that is, the mean is different of 0.15, so:
[tex]H_1: \mu \neq 0.15[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.15 is tested at the null hypothesis:
This means that [tex]\mu = 0.15[/tex]
Sample mean of 0.152, sample of 10, population standard deviation of 0.005.
This means that [tex]X = 0.152, n = 10, \sigma = 0.005[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.152 - 0.15}{\frac{0.005}{\sqrt{10}}}[/tex]
[tex]z = 1.26[/tex]
P-value of the test and decision:
The p-value of the test is the probability of the sample mean differing from 0.15 by at least 0.152 - 0.15 = 0.002, which is P(|z| > 1.26), given by two multiplied by the p-value of z = -1.26.
Looking at the z-table, z = -1.26 has a p-value of 0.1038.
2*0.1038 = 0.2076
The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.
Question b:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 1.96\frac{0.005}{\sqrt{10}} = 0.003[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 0.15 - 0.003 = 0.147.
The upper end of the interval is the sample mean added to M. So it is 0.15 + 0.003 = 0.153.
The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.
which of the following are solutions to the quadratic equation below? x^2+7x=8
Answer:
x = -8, 1
Step-by-step explanation:
Hi there!
[tex]x^2+7x=8[/tex]
Move 8 to the other side:
[tex]x^2+7x-8=8-8\\x^2+7x-8=0[/tex]
Now, we can ask ourselves: what two factors of -8 add to 7? Those two numbers would be 8 and -1. Knowing this, factor:
[tex](x+8)(x-1)=0[/tex]
Because of the zero product property (that states that if the product of two numbers is 0, then one of the numbers must be equal to 0), we can find the solutions to the quadratic by setting each term equal to 0:
[tex]x+8=0\\x=-8[/tex]
[tex]x-1=0\\x=1[/tex]
Therefore, the solutions of the quadratic are -8 and 1.
I hope this helps!
The work of a student to solve a set of equations is shown:
Equation A: y = 15 − 2z
Equation B: 2y = 3 − 4z
Step 1: −2(y) = −2(15 − 2z) [Equation A is multiplied by −2.]
2y = 3 − 4z [Equation B]
Step 2: −2y = 15 − 2z [Equation A in Step 1 is simplified.]
2y = 3 − 4z [Equation B]
Step 3: 0 = 18 − 6z [Equations in Step 2 are added.]
Step 4: 6z = 18
Step 5: z = 3
In which step did the student first make an error?
Step1
Step 2
Step 3
Step 4
Step 2
−2y = 15 − 2z
should be
−2y = -30 + 4a
a. The lengths of pregnancies in a small rural village are normally distributed with a mean of 266 days and a standard deviation of 14 days.
In what range would you expect to find the middle 98% of most pregnancies?
Between_____ and___ .
If you were to draw samples of size 35 from this population, in what range would you expect to find the middle 98% of most averages for the lengths of pregnancies in the sample?
Between_________ and __________.
b. Engineers must consider the breadths of male heads when designing helmets. The company researchers have determined that the population of potential clientele have head breadths that are normally distributed with a mean of 6.9-in and a standard deviation of 0.9-in.
In what range would you expect to find the middle 95% of most head breadths?
Between ____________and ___________.
If you were to draw samples of size 45 from this population, in what range would you expect to find the middle 95% of most averages for the breadths of male heads in the sample?
Between____ and____ .
c. The lengths of pregnancies in a small rural village are normally distributed with a mean of 265.3 days and a standard deviation of 15.2 days.
In what range would you expect to find the middle 50% of most pregnancies?
Between ____and____ .
d. The lengths of pregnancies in a small rural village are normally distributed with a mean of 265 days and a standard deviation of 16 days.
In what range would you expect to find the middle 68% of most pregnancies?
Between _________and ___________.
If you were to draw samples of size 44 from this population, in what range would you expect to find the middle 68% of most averages for the lengths of pregnancies in the sample?
Between_____ and_____ .
Step-by-step explanation:
a.
mean = 266
sd = 14
cumulative probability = 0.01 so the standard score = -2.33 and 2.33 to the right and left
we find X-upper and X-lower
X-lower = 266-2.33*14 = 233.38
X-upper = 266+2.33*14 = 298.62
Between 233.38 and 298.62
we have sample size = 35
X-lower = 266-2.33*14/√35 = 260.49
X-upper = 266+2.33*14/√35 = 271.5
Between 260.49 and 271.5
b. cumulative probaility = 0.25
standard score = 1.96 to the right and left
x-lower = 6.9-1.96x0.9 = 5.14
x-upper = 6.9+1.96x0.9 = 8.66
Between 5.14 and 8.66
if sample size = 45
x-lower = 6.9-1.96*0.9/√45 = 6.64
x-upper = 6.9+1.96*0.9/√45 = 7.2
Between 6.64 and 7.2
c. standard scores would have cut off value at 0.67 and -0,67
x-lower = 265.3-0.67x15.2 = 255.12
x-upper = 265.3+0.67x15.2 = 275.48
Between 255.12 and 275.48
d. we will have critical values at 1.00 and -1.00
X-lower = 265-1x16 = 249
x-upper = 265+1x16 = 281
Between 249 and 281
with sample size = 44
x-lower = 265-1x16/√44 = 262.59
x-upper = 265+1x16/√44 = 267.41
Between 262.59 and 267.41
A manufacturer claims that its drug test will detect steroid use (that is, show positive for an athlete who uses steroids) 95% of the time. Further, 15% of all steroid-free individuals also test positive. 10% of the rugby team members use steroids. Your friend on the rugby team has just tested positive. The correct probability tree looks like
Answer:
The probability tree is;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Step-by-step explanation:
Given the data in the question;
10% of the rugby team members use steroids
so Probability of using steroid; P( use steroid ) = 10% = 0.10
Probability of not using steroid; P( no steroid use ) = 1 - 0.10 = 0.90
Since the test show positive for an athlete who uses steroids, 95% of the time.
Probability of using steroids and testing positive = 95% = 0.95
Probability of using steroids and testing Negative = 1 - 0.95 = 0.05
Also from the test, 15% of all steroid-free individuals also test positive.
so
Probability of not using steroids and testing positive = 15% = 0.15
Probability of not using steroids and testing negative = 1 - 0.15 = 0.85
To set up the probability tree, Let;
[tex](S)[/tex] represent steroid use
[tex](S_{no})[/tex] represent no steroid use
[tex](+)[/tex] represent test positive
[tex](-)[/tex] represent test negative
so we have;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Question 17 of 25
Solve the inequality. Enter the answer as an inequality that shows the value of
the variable; for example f>7, or 6 < w. Where necessary, use <= to write s
and use >= to write .
V-(-5) <-9
Answer here
I
SUBMIT
Answer:
v-(-5)<-9
v- remove brackets -5
v- -5= -4 +5 ( opposite operation)
v- = -4
v< -4
) Express the prime number 43 as the difference of two squares?
Step-by-step explanation:
The prime 43 appears in the sixth twin-prime pair 41, 43. As a sum of four or fewer squares: 43 = 32 + 32 + 52 = 12 + 12 + 42 + 52 = 32 + 32 + 32 + 42. ... As a difference of two squares: 43 = 222 − 212.
Plz help
Need answers ASAP
Answer:
1. cube
2. square pyramid
4. cone
5. cube
find the surface area of the triangular prism below.
Step-by-step explanation:
At first you need to take its lateral surface area by using the perimeter of base of the triangle and the height of prism.
Then after calculating it you need to find out its total surface area which is asked in the question and that is calculated by adding the area of both triangles of the prism in the lateral surface area.
Then that's your answer.
9514 1404 393
Answer:
544 square units
Step-by-step explanation:
The surface area is the sum of the area of the two triangular bases and the three rectangular faces. The relevant area formulas are ...
A = 1/2bh . . . . area of a triangle with base b and height h
A = LW . . . . . are of a rectangle of length L and width W
__
SA = 2(1/2)(12)(8) + (10 +10 +12)(14)
SA = 96 +448 = 544 . . . square units
5.04 X 10
200.8
504
H 5,044
J 50,400
K
none of these
Step-by-step explanation:
The answer to 5.04 × 10 eqauls 50.4 , but there are no answers choices that have exactly 50.4 , so the answer is none of these . I hope this helps you :)
Does this appear to be a regular polygon? Explain using the definition of a regular polygon.
Answer:
yes it is. a polygon is any closed shape with at least 3 connected lines (eg. triangle, square, pentagon, hexagon, heptagon, octagon, etc)
Step-by-step explanation:
The cylinders shown are similar. What is the volume of the larger cylinder?
Step-by-step explanation:
Ratio of height (large to small) = ratio of radii (large to small).
(h / 14) = (8 / 2)
h / 14 = 4
h = 56
The height of the larger cylinder is 56m.
Volume of cylinder is
V = πr2h
V = π(8)2(56)
V = 3584π
In a survey conducted at a pet store, 150 customers were asked if they owned
birds or fish. The survey data are shown in the relative frequency table.
Answer:
12% percent of fish in own
The % of people surveyed own fish is 12%.
To find the % of people surveyed own fish.
What is relative frequency?Relative frequency refers to the percentage or proportion of times that a given value occurs within a set of numbers, such as in the data recorded for a variable in a survey data set.
Given that:
In a survey conducted at a pet store, 150 customers were asked if they owned birds or fish.
By the data on the table:
Total (own fish) = 0.04 + 0.08 = 0.12
So, own fish = 0.12
=12/100= 12%
So, 12% of the people surveyed own fish.
Learn more about relative frequency here:
https://brainly.com/question/24263545
#SPJ2
Find equation of linear function represented by the table below in slope intercept form
Answer:
y=4x+3
Step-by-step explanation:
The slope of the line is (13-7)/(2-1)=4. The line equation is hence y=4x+3
how many degrees are there in the angle made by the heart hand and the minute hand of a clock when it is 9 o'clock
both angles are 90 degrees
Buses on a particular route stop in front of De Anza College every 20 minutes between 3:00 p.m. and 1:00 a.m. The waiting times are equally likely. We asked the 33 people waiting at 6:45 p.m. how long they had been waiting, and then calculated the average wait time for those people.
The probability that the average wait time is no more than 15 minutes is:____.
a. 1.
b. 0. 7500.
c. 0. 7769.
d. 0.
The distribution of the average wait times is:
a. N(10 , 1. 0050).
b. U(0 , 20).
c. N(10 , 5.7735).
d. Exp (1 20).
Answer:
1. a. 1
2. a. N(10 , 1. 0050)
Step-by-step explanation:
The average time for the people waiting for the bus will be no longer than 15 minutes. There are 33 people who were observed and their waiting time did not exceed 15 minutes. The probability is therefore 1 for the wait time.
find the missing side length in the image below
Answer:
3/6=?/10
Step-by-step explanation:
multiply by together. ?=5
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
18x + 3y = -18
An adult can lose or gain two pounds of water ina course of a day. Assume that the changes in water weight isuniformly distributed between minus two and plus two pounds in aday. What is the standard deviation of your weight over a day?
Answer:
The standard deviation of your weight over a day is of 1.1547 pounds.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b, and the standard deviation is:
[tex]S = \sqrt{\frac{(b-a)^2}{12}}[/tex]
Assume that the changes in water weight is uniformly distributed between minus two and plus two pounds in a day.
This means that [tex]a = -2, b = 2[/tex]
What is the standard deviation of your weight over a day?
[tex]S = \sqrt{\frac{(2 - (-2))^2}{12}} = \sqrt{\frac{4^2}{12}} = \sqrt{\frac{16}{12}} = 1.1547[/tex]
The standard deviation of your weight over a day is of 1.1547 pounds.
which one of these points lies on the line described by the equation below y - 5 = 6 ( x - 7 )
Answer:
the answer would be (7,5)
If a $6 per unit tax is introduced in this market, then the new equilibrium quantity will be
Answer:
soory i dont know just report me if you angry
Jean drove 67 miles per hour for a total of 469 miles on a trip. She used the equation below to calculate the time, t, it would take her to complete the trip.
469 = 67t
What is the constant of proportionality in the equation?
A.
7
B.
67
C.
469
D.
t
9514 1404 393
Answer:
B. 67
Step-by-step explanation:
Miles are proportional to time at some speed. The constant of proportionality is the speed, 67 (miles per hour).
What is the surface area of a cube with a side length of 6 m?
156 m2
300 m2
216 m2
360 m2
Answer:
216 m²
Step-by-step explanation:
Surface area of a cube = 6a², when a = length of one side
so,
6a²
= 6×6²
= 6×36
= 216 m²
Answered by GAUTHMATH
Answer:
216 m²
Step-by-step explanation:
Determine if the graph of y=x/x^2-4 is symmetrical with respect to the x-axis, the y-axis, or the origin.
a. about the x-axis
b. about the y-axis
c. about the origin
d. all of these
e. none of these
please help i’ll also rate brainliest
9514 1404 393
Answer:
c. about the origin
Step-by-step explanation:
The function is odd: replacing x with -x gives the negative of the function value:
f(-x) = -f(x)
Odd functions are symmetrical about the origin.
HELP!!!!
Please help me!!
I need help!!
HELP!!!!
Answer:
Pretty sure it's A
Step-by-step explanation:
The x outside the parenthesis means that there's an x intercept at (0,0) and (x-3) means there's another one at (3,0)
Suppose the distributor charges the artist a $40.00 cost for distribution, and the streaming services pays $4.00 per unit. (Note: One unit = one thousand streams)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Formula: y = 40x + 4 (Graph Attached)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
After how many streams will you pay for the distributor charges? (Hint: this is where the line crosses the x-axis, round to the nearest thousand)
Answer:
356 streams
Step-by-step explanation:
From the graph, you will see that the line cross the x-axis at x = 8.8
Substitute into the expression y = 40x + 4
y = 40(8.8)+4
y = 352 + 4
y = 356
Hence the distributor charges will be paid for after 356 streams
Write the equation of the line in fully simplified slope-intercept form.
From the graph, we can write that
The equatuon of line passes through (0,4) and
(-8,0) points.
So
[tex] \sf \: slope \: \: m = \frac{4 - 0}{0 - ( - 8)} = \frac{4}{8} = \frac{1}{2} \\ \therefore \green{\sf \: m = \frac{1}{2} }[/tex]
Intercept of Y-axis c = 4
So equation is :
[tex] \bf \: y = mx + c \\ \bf = > y = \frac{1}{2} x + 4 \\ \bf = > 2y = x + 4 \\ \bf= > \orange{ \boxed{ \bf \: x - 2y + 4 = 0}}[/tex]