Answer:
a) 0.9544 = 95.44% of scores lie between 220 and 380 points.
b) 0.1587 = 15.87% probability that a randomly chosen student scores is below 260.
c) 25.14% of scores are above 326.8 points.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 300 and a standard deviation of 40.
This means that [tex]\mu = 300, \sigma = 40[/tex]
(a) What proportion of scores lie between 220 and 380 points?
This is the p-value of Z when X = 380 subtracted by the p-value of Z when X = 220.
X = 380
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{380 - 300}{40}[/tex]
[tex]Z = 2[/tex]
[tex]Z = 2[/tex] has a p-value of 0.9772.
X = 220
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{220 - 300}{40}[/tex]
[tex]Z = -2[/tex]
[tex]Z = -2[/tex] has a p-value of 0.0228.
0.9772 - 0.0228 = 0.9544
0.9544 = 95.44% of scores lie between 220 and 380 points.
(b) What is the probability that a randomly chosen student scores is below 260?
This is the p-value of Z when X = 260. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{260 - 300}{40}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a p-value of 0.1587.
0.1587 = 15.87% probability that a randomly chosen student scores is below 260.
(c) What percent of scores are above 326.8 points?
The proportion is 1 subtracted by the p-value of Z when X = 326.8. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{326.8 - 300}{40}[/tex]
[tex]Z = 0.67[/tex]
[tex]Z = 0.67[/tex] has a p-value of 0.7486.
1 - 0.7486 = 0.2514
0.2514*100% = 25.14%
25.14% of scores are above 326.8 points.
find the slope of the line
answer choices: 4, 5, 20, 25
Answer: Third Choice. 20
Concept:
Here, we need to know the idea of a slope.
In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line.
Slope = Rise / Run = Δy / Δx = (y₂ - y₁) / (x₂ - x₁)
Solve:
STEP ONE: Select two points on the line that intersects with the grids
A (0, 5)
B (1, 25)
STEP TWO: Apply the formula
Slope = (y₂ - y₁) / (x₂ - x₁)
Slope = (25 - 5) / (1 - 0)
Slope = 20 / 1
Slope = 20
Hope this helps!! :)
Please let me know if you have any questions
Answer:
20
Step-by-step explanation:
We can find the slope of the line by using the slope formula
Slope = (y2 - y1)/(x2-x1)
Where the x and y values are derived from points chosen on the line
The points chosen may vary but I have chosen (1,25) and (2,45)
Now that we have chosen the points let's define our variables ( our variables are x1 x2 y1 and y2 )
x1 is the x value of the first point chosen.The x value of the first point chosen is 1 so x1 = 1
x2 is the x value of the second point chosen. The x value of the second point chosen is 2 so x2 = 2
y1 is the y value of the second point chosen. The y value of the first point chosen is 25 so y1 = 25
y2 is the y value of the second point chosen. The y value of the second point chosen is 45 so y2 = 45
Now to find the slope we simply plug in the values of the variables into the formula
Formula: (y2 - y1)/(x2-x1)
Variables: x1 = 1, x2 = 2, y1 = 25, y2 = 45
Plug in values
(45-25)/(2-1)
Subtract top numbers
(20)/(2-1)
Subtract bottom numbers
20/1
Simplify
The slope is 20
7. Solve for x: x/6 - y/3 = 1
Please give steps! ❤️
[tex]\\ \sf\longmapsto \frac{x}{6} - \frac{y}{3} = 1 \\ \\ \sf\longmapsto \frac{x - 2y}{6} = 1 \\ \\ \sf\longmapsto x - 2y = 6 \\ \\ \sf\longmapsto x = 6 + 2y[/tex]
If a and b are positive numbers, find the maximum value of f(x) = x^a(2 − x)^b on the interval 0 ≤ x ≤ 2.
Answer:
The maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given the function:
[tex]\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0[/tex]
And we want to find the maximum value of f(x) on the interval [0, 2].
First, let's evaluate the endpoints of the interval:
[tex]\displaystyle f(0) = (0)^a(2-(0))^b = 0[/tex]
And:
[tex]\displaystyle f(2) = (2)^a(2-(2))^b = 0[/tex]
Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:
[tex]\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right][/tex]
By the Product Rule:
[tex]\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}[/tex]
Set the derivative equal to zero and solve for x:
[tex]\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right][/tex]
By the Zero Product Property:
[tex]\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0[/tex]
The solutions to the first equation are x = 0 and x = 2.
First, for the second equation, note that it is undefined when x = 0 and x = 2.
To solve for x, we can multiply both sides by the denominators.
[tex]\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))[/tex]
Simplify:
[tex]\displaystyle a(2-x) - b(x) = 0[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\ \frac{2a}{a+b} &= x \end{aligned}[/tex]
So, our critical points are:
[tex]\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}[/tex]
We already know that f(0) = f(2) = 0.
For the third point, we can see that:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b[/tex]
This can be simplified to:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Since a and b > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.
To confirm that this is indeed a maximum, we can select values to test. Let a = 2 and b = 3. Then:
[tex]\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)[/tex]
The critical point will be at:
[tex]\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8[/tex]
Testing x = 0.5 and x = 1 yields that:
[tex]\displaystyle f'(0.5) >0\text{ and } f'(1) <0[/tex]
Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.
Therefore, the maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
I purchased a new Apple iPad on Amazon for $249.00. The tax rate is 8.625%. What is the total purchase price of the iPad?
Answer:
270.47625
Step-by-step explanation:
249 is the original price
(249/100) · 8.625 = 21.47625 the tax total
249 + 21.47625 = 270.47625
Student is 19 years old in the world has a population of 6.7 billion assuming that the population continues to grow in annual rate of 1.1%, predict what the worlds population will be when the student is 52
9514 1404 393
Answer:
9.6 billion
Step-by-step explanation:
The population multiplier is 1+1.1% = 1.011 each year. After 52-19 = 33 years, the multiplier will be 1.011^33 ≈ 1.4348.
When the student is 52, the population of the world will be about ...
6.7 billion × 1.4348 ≈ 9.6 billion
PLEASE ANSWER
Triangle ABC is similar to triangle DEF. find the length of median CP
A. 12
B. 16
C. 24
D.48
12/16 = (3x-12)/(2x+8)
16(3x-12)=12(2x+8)
48x-192=24x+96
48x-24x=192+96
24x=288
X=288/24
X=12
3x-12
=(12x3)-12
=36-12
=24
C is the answer
Hope this helps!
Answer:
48
Step-by-step explanation:
2x+8=3x-12(ABCP ~FDQE)
2x-3x= -8-12
-x= -20
x=20
now,
CP=3x-12
3*20-12
48
Which of the following is a polynomial?
A. X4- 2
B. 1/x+ 2
c. x-2-1
D.(x - 4)/(x + 1)
Answer:
ok um last person was rude but your answer is A
Step-by-step explanation:
(Kind of urgent!) Using the figure below, find the value of a. Enter your answer as a simplified radical or improper fraction (if necessary)
Answer:
15/4
Step-by-step explanation:
sin60 =z/15
z=15sin60 =(15√3)/2
cos30 =b/z
b = zcos30 = (15√3)/2 * √3/2 = 45/4
a = 15-b = 15-45/4 = 15/4
The value of a is 15/4
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
According to the given figure,
Here is a right triangle
Let, The hypotenuse = 15
perpendicular = z and base = 15 = a + b
⇒ sin60 = perpendicular/hypotenuse = z/15
⇒ z = 15sin60 = (15√3)/2
⇒ cos30 = base/hypotenuse = b/z
⇒ b = zcos30 = (15√3)/2 * √3/2 = 45/4
⇒ a + b = 15
Substitute the value of b in the above equation,
⇒ a = 15-b = 15-45/4 = 15/4
Hence, the value of a is 15/4.
Learn more about the right triangle here:
brainly.com/question/6322314
#SPJ6
The length L of the base of a rectangle is 5 less than twice its height H. Write the algebraic expression to model the area of the rectangle.
Answer:
Area of rectangle = 2H² - 5H
Step-by-step explanation:
Let the length be L.Let the height be H.Translating the word problem into an algebraic expression, we have;
Length =2H - 5
To write the algebraic expression to model the area of the rectangle;
Mathematically, the area of a rectangle is given by the formula;
Area of rectangle = L * H
Where;
L is the Length.H is the Height.Substituting the values into the formula, we have;
Area of rectangle = (2H - 5)*H
Area of rectangle = 2H² - 5H
What is the amplitude in the graph of y = 4sin(3x – 1) + 5?
Given the definition above and the fact that top points of the function are at y=9 and the low point are at y=1, the center line must be halfway at y=5.
the amplitude therefore is 4. it's also just half the difference of 1 and 9.
I did this graphically with desmos. Doing it algebraicly would have taken much more time i guess.
9+1+10+6×5+9+8×9+8+8+7+6+6+9+6+8+69+85+86+86+97+86+87+86+68
Step-by-step explanation:
hope it will help u
hope it will help u please mark me as brillient...
Answer:
939 is the answer
Step-by-step explanation:
plz Mark me as the brainlist
A large soda-pop manufacturer wants to introduce a new design for the label on one of its signature soda-pop drinks. The manufacturer selects a random sample of 150 customers from people who purchase the drink at a large sporting event. Each selected customer is asked whether or not he or she prefers the new design. If the manufacturer were to take a second random sample of 150 customers at the sporting event, the two samples would give somewhat different results in the proportion who prefer the new design. This variation is a source of
Answer:
This variation is a source of
response error.
Step-by-step explanation:
A response error shows the lack of accuracy in the customer responses to the survey questions. A response error can be caused by a questionnaire that requires framing improvements, misinterpretation of questions by interviewers or respondents, and errors in respondents' statements. Some responses are influenced by the answers provided to previous questions, which introduces response bias.
How do you expand ln(1/49^k)
Answer:
There are a few rules that we can use here:
ln(a^x) = x*ln(a)
ln(a) - ln(b) = ln(a/b)
ln(1) = 0
So here we want to expand:
ln(1/49^k)
First we can use the second property to get:
ln(1/49^k) = ln(1) - ln(49^k)
using the third property, we have:
ln(1/49^k) = ln(1) - ln(49^k) = 0 - ln(49^k)
ln(1/49^k) = - ln(49^k)
Now we can use the first property to get:
ln(1/49^k) = - k*ln(49)
Now we can use the fact that:
49 = 7*7 = 7^2
then:
- k*ln(49) = -k*ln(7^2) = -2*k*ln(7)
So we have:
ln(1/49^k) = (-2*ln(7))*k
We can expand it anymore because this is a real number "(-2*ln(7))" times a variable k.
find the slope of the line that passes through these two points
Answer:
Step-by-step explanation:
Find the missing ? Explanation need it
Answer:
37°
Step-by-step explanation:
that is the procedure above
Solve this equation for x. Round your answer to the nearest hundredth.
8 = In(x + 3)
Answer:
2977.96 =x
Step-by-step explanation:
8 = In(x + 3)
Raise each side to the base of e
e^8 = e^ ln(x+3)
e^8 = x+3
Subtract 3 from each side
e^8 -3 = x+3-3
e^8 -3= x
2977.95798 = x
Rounding to the nearest hundredth
2977.96 =x
Answer:
[tex]\displaystyle x = 2977.96[/tex]
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra II
Natural logarithms ln and Euler's number eStep-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 8 = ln(x + 3)[/tex]
Step 2: Solve for x
[Equality Properties] e both sides: [tex]\displaystyle e^8 = e^{ln(x + 3)}[/tex]Simplify: [tex]\displaystyle x + 3 = e^8[/tex][Equality Property] Subtract 3 on both sides: [tex]\displaystyle x = e^8 - 3[/tex]Evaluate: [tex]\displaystyle x = 2977.96[/tex]3 1/2 of 4.4 of 1.1 of 5 WILL GIVE BRAINLIEST
Answer:
84.7
Step-by-step explanation:
of is another way to say multiply so what your doing is muliplying all the numbers
Answer:
84.7
Step-by-step explanation:
SEE THE IMAGE FOR SOLUTION
HOPE IT HELPS
HAVE A GREAT DAY
***URGENT***
PLEASE HELP ME ASAP, ITS DUE TODAY!!!
............................................................
T is the point on AB such that AT:TB = 5: 1. Show that ot is parallel to the vector a + 2b.
Step-by-step explanation:
SO, OT is parallel to the vector a+2b
Tom and Jerry make separate investments at the same time. Tom invests $2000 at an annual interest rate of 2% compounded continuously. Jerry invests $1800 at an annual rate of 2.5% compounded monthly.
a.) Who has the most money after 15 years? Clearly show all work to support your answer.
b.) How long will it take for Tom’s investment to triple in value?
Answer:
Step-by-step explanation:
TOM / 6.02 years
~~~~~~~~~~~~~~~~~~~~~~
Tom: 2000(1.02)^15 = $2,691.74
Jerry: 1800(1.025)^15 = $2,606.94
TOM has more money after 15 years...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6000 = 2000(1.02)^t
3=(1.02)^t
ln(3) = t * ln(1.02)
t = ln(3)/ln(1.2)
t = 6.02 years
Solve for x
X-8 = -10
A) X = 2
B) X = -2
C) X = 18
D) X = -18
Answer:
x=–2
Step-by-step explanation:
x-8=-10
x=-10-8
x=–2
Answer:
-8= -10
, = -10+8
, = -2
Emily, Yani and Joyce have a total of 3209 stickers. Yani has 2 times
as many stickers as Joyce. Emily has 279 more stickers than Yani. How
many more stickers does Emily have than Joyce?
Answer:
279+x
Step-by-step explanation:
Emily + Yani + Joyce=3209 stickers
if Yani has 2 times as many stickers as Joyce:this statement states that Joyce has x stickers and Yani has 2x stickers because x multiplied by 2"Emily has 279 more stickers than Yani":therefore the equation for Emily will be ;279+2xhow many stickers does Emily have than Joyce:
(279+2x)-(x)
279+2x-x
=279+x
PLEASE HELP!!!
Evaluate each expression.
(252) =
Answer:
1/5
Step-by-step explanation:
the mean if 5 numbers is 19 what is the sum of the number?
Answer:
95
Step-by-step explanation:
Use the mean formula: mean = sum of elements / number of elements
Plug in the mean and number of elements, then solve for the sum of the numbers:
mean = sum of elements / number of elements
19 = sum of elements / 5
95 = sum of elements
So, the sum of the numbers is 95.
The following list shows the colours of a random selection of sweets.
red green red blue pink red
yellow pink blue yellow red yellow
Select the type of the data.CHOOSE ONE PLEASE HELP
Discrete
Continuous
Categorical
Quantitative
Answer:
Categorical or Continuous.
Step-by-step explanation:
Because the red appears in each colours (continuous)
We are given a jar full of thousands of red and blue marbles. We want to estimate the unknown proportion pof red marbles in the jar. To do this, we randomly draw 100 marbles and count reds: it so happens we drew 45 reds. Enter values in decimal form, rounded to four decimal places (or more).
We estimate the proportion of reds in the jar to be
Attach a give-or-take value to this estimate. (That is, estimate the standard error.)
For a 96% confidence interval, about how many standard errors should be added to and subtracted from the estimate?
Set up an approximate 96% confidence interval for the unknown proportion of reds in the jar.
Answer:
(0.3478, 0.5522)
Step-by-step explanation:
Given:
Total number of red marbles, x = 45
Total number of marbles, n = 100
Phat = x / n = 45 / 100 = 0.45
The confidence interval, C.I is given by :
Phat ± Zcritical * standard error
Phat ± Zcritical * √Phat(1 - Phat) / n
Zcritical at 96% = 2.0537
The standard error = √Phat(1 - Phat) / n
S.E = √(0.45 * 0.55) / 100 = 0.0497493
C.I = 0.45 ± (2.0537 * 0.0497493)
C.I = 0.45 ± 0.10217013741
C. I = (0.3478, 0.5522)
Mason conducted a survey of his class to determine if they prefer to use pens or pencils for their math homework. Out of the 30 students in his class, 12 of them are male. A total of 21 students said they prefer pencils, and 12 of those students are female.
Fill in the missing joint and marginal frequencies in the table.
Pencils Pens Total
Male
% 10% 40%
Female
% 20%
%
Total 70%
% 100%
Answer:
Step-by-step explanation:
-Total column
30 students in the class
12 male , so 30-12 = 18 female
-Pencils column
21 students prefer pencils
12 female that prefer pencils , 21-12 = 9 male that prefer pencils
-Total row
21 students prefer pencils
30 students total, 30-21 = 9 students prefer pens
-Pens column
12 students male -9 students male prefer pencil =3 students male prefer pens
18 students female -12 students female prefer pencil =6 students female prefer pens
-to calculate the % always find the equivalent fraction of
30 students/ 100% = number of students you have / ?%
example: for male that prefer pencils we have 30/100 = 9/? so
? = 100*9 /30 =30%
(02.02 MC) Use the graph to fill in the blank with the correct number.
Numerical Answers Expected!
Answer for Blank 1:
Answer:
The answer is "2"
Step-by-step explanation:
When we check the points where the x is -2
by calculating the "y-value":
It is 2, right?
it implies that [tex]f(-2)=2[/tex]
that's why the final answer is "2"
Now there is a square city of unknown size with a gate at the center of each side. There is a tree 20 b from the north gate. That tree can be seen when one walks 14 bu from the south gate, turns west and walks 1775 bu. Find the length of each side of the city.
Answer:
The length of each side of the city is 250b
Step-by-step explanation:
Given
[tex]a = 20[/tex] --- tree distance from north gate
[tex]b =14[/tex] --- movement from south gate
[tex]c = 1775[/tex] --- movement in west direction from (b)
See attachment for illustration
Required
Find x
To do this, we have:
[tex]\triangle ADE \sim \triangle ACB[/tex] --- similar triangles
So, we have the following equivalent ratios
[tex]AE:DE = AB:CB[/tex]
Where:
[tex]AE = 20\\ DE = x/2 \\ AB = 20 + x + 14 \\ CB = 1775[/tex]
Substitute these in the above equation
[tex]20:x/2 = 20 + x + 14: 1775[/tex]
[tex]20:x/2 = x + 34: 1775[/tex]
Express as fraction
[tex]\frac{20}{x/2} = \frac{x + 34}{1775}[/tex]
[tex]\frac{40}{x} = \frac{x + 34}{1775}[/tex]
Cross multiply
[tex]x *(x + 34) = 1775 * 40[/tex]
Open bracket
[tex]x^2 + 34x = 71000[/tex]
Rewrite as:
[tex]x^2 + 34x - 71000 = 0[/tex]
Expand
[tex]x^2 + 284x -250x - 71000 = 0[/tex]
Factorize
[tex]x(x + 284) -250(x + 284)= 0[/tex]
Factor out x + 284
[tex](x - 250)(x + 284)= 0[/tex]
Split
[tex]x - 250 = 0 \ or\ x + 284= 0[/tex]
Solve for x
[tex]x = 250 \ or\ x =- 284[/tex]
x can't be negative;
So:
[tex]x = 250[/tex]
Please help explanation need it
Step-by-step explanation:
jejejebe. s shs sjs sibskkw
What is the equation of the line that passes through (-3,-1) and has a slope of 2/5? Put your answer in slope-intercept form
A: y= 2/5x -1/5
B: y= 2/5x +1/5
C: y= -2/5x -1/5
Answer:
y = 2/5x + 1/5
Step-by-step explanation:
y = 2/5x + b
-1 = 2/5(-3) + b
-1 = -6/5 + b
1/5 = b