If tall is completely dominant over short, then the mother's genotype is either TT or Tt. The father is short so his genotype is tt.
Crossing TT with tt produces only heterzygous offspring with genotype Tt. Then the genotypic and phenotypic ratios are 0 TT : 1 Tt : 0 tt and 1 tall : 0 short, respectively. As percentages, these would
• geno: 0% TT : 100% Tt : 0% tt
• pheno: 100% tall : 0% short
Crossing Tt with tt on the other hand produces offspring with genotype either Tt or tt with equal probability, so that the geno and pheno ratios are 0 TT : 1 Tt : 1 tt and 1 tall : 1 short. As percentages,
• geno: 0% TT : 50% Tt : 50% tt
• pheno: 50% tall : 50% short
Find the standard deviation for the following group of data items.
9, 11, 11, 16
The standard deviation for the given data items is 2.6
The standard deviation of the given data items can be calculated by taking the square root of the variance.
Variance is a measure of variability and it is calculated by taking the average of squared deviations from the mean.
Hence, we will first determine the mean of the given data items.
Mean is simply the average of the numbers.
Therefore mean of the given data items is
[tex]Mean = \frac{9+11+11+16}{4}[/tex]
[tex]Mean = \frac{47}{4}[/tex]
Mean = 11.75
Now, for the variance of the data
[tex]Variance = \frac{(9-11.75)^{2}+(11-11.75)^{2}+(11-11.75)^{2}+(16-11.75)^{2} }{4}[/tex]
[tex]Variance = \frac{(-2.75)^{2}+(-0.75)^{2}+(-0.75)^{2}+(4.25)^{2} }{4}[/tex]
[tex]Variance = \frac{7.5625+0.5625+0.5625+18.0625}{4}[/tex]
[tex]Variance = \frac{26.75}{4}\\[/tex]
∴ Variance = 6.6875
But,
Standard deviation [tex]= \sqrt{Varinace}[/tex]
∴Standard deviation [tex]=\sqrt{6.6875}[/tex]
Standard deviation = 2.586
Standard deviation ≅ 2.6
Hence, the standard deviation for the given data items is 2.6
Learn more on standard deviation here: https://brainly.com/question/18562832
Please help on 25 it’s confusing me I need the correct answer
Answer:
X * 0.8 = $64
x = $80
Step-by-step explanation:
Answer:
$80 (D)
Step-by-step explanation:
If Richard is getting a discount and his final price is $64 that means the answer must be above 64. That eliminates A, B, and C.
Use the formula: 20% of x = $64 and substitute the other two options. 20 percent of 84 is 16.8. 84-16.8=67.2 (not the correct answer). 20 percent of 80 is 16. 80-16=64(The Correct Answer).The answer must be $80 (D)
Help please anyone???
9514 1404 393
Answer:
x^2/1 +y^2/81 = 1
Step-by-step explanation:
We know that the equation of a unit circle is ...
x^2 +y^2 = 1 . . . . . equation of a unit circle
We also know that replacing x with x/a in a function will expand the graph by a factor of 'a'. Similarly, replacing y with y/b will do the same in the vertical direction.
An ellipse is a circle that has had different expansion factors applied along its different axes. Here, the given points tell us the center of the ellipse is (0, 0), and that it has been expanded by a factor of 9 in the y-direction and a factor of 1 in the x-direction This means the equation for it would be ...
(x/1)^2 +(y/9)^2 = 1 . . . . . equation for desired ellipse
In the required form, this is ...
[tex]\dfrac{x^2}{1}+\dfrac{y^2}{81}=1[/tex]
What is the domain of the function graphed below?
Answer:
A. x<7
Step-by-step explanation:
The point at x=7 is an open circle, so the sign is <, not ≤
Cho X có phân phối nhị thức với n= 20 và p=0,4. Kỳ vọng của X là:
A.4
B.6
C.8
D.10
Step-by-step explanation:
[tex]10 \: is \: the \: answer[/tex]
What is 7 1/6 - 3 4/9 =
Answer:
67/18
Step-by-step explanation:
Find common denominator:
7 9/54 - 3 24/54
Convert to improper fraction
387/54 - 186/54
201/54
67/18
Answer:
3 15/18
Step-by-step explanation:
We start by looking at the problem, and by trying to change the denominator by finding out what number than can both go into 6 and 9.
6 x 3 = 18 9 x 2 = 18
We then change the denominator to 18.
Next, we change the whole number into a fraction. If we convert 2 whole numbers into 7 1/18, we get 5 37/18. If we convert 1 into 3 4/18, we get 2 22/18.
If we then subtract the whole numbers and fractions, the answer is
3 15/18. (It can not simplify).
What is the dimension of the vector space consisting of five-by-one column matrices where the rows sum to zero and the first row is equal to the second row?
a. 5
b. 4
c. 3
d. 2
Answer:
Option c.
Step-by-step explanation:
If we have a vector of N components (or variables), and we have K linear independent restrictions for these N components (such that K < N, we can't have more restrictions than components.)
The dimension of the vector will be given by N - K.
Here we know that we have a vector of 5 components, that can be written as:
[tex]v = \left[\begin{array}{ccc}v_1\\v_2\\v_3\\v_4\\v_5\end{array}\right][/tex]
And we have two restrictions, so we can expect that the dimension of the vector is:
5 - 2 = 3
But let's see it, the restrictions are:
"the first row is equal to the second row"
Then we can rewrite our vector as:
[tex]v = \left[\begin{array}{ccc}v_1\\v_1\\v_3\\v_4\\v_5\end{array}\right][/tex]
Notice that now we have only 4 variables, v₁, v₃, v₄, and v₅
We also know that the sum of the rows is equal to zero, thus:
v₁ + v₂ + v₃ + v₄ + v₅ = 0
we know that v₂ = v₁, so we can replace that to get:
2*v₁ + v₃ + v₄ + v₅ = 0
Now we can isolate one of the variables, to write it in term of the others, for example, let's isolate v₅:
v₅ = -2*v₁ - v₃ - v₄
Now if we replace that in our vector, we have:
[tex]v = \left[\begin{array}{ccc}v_1\\v_1\\v_3\\v_4\\-2*v_1 - v_3 - v_4\end{array}\right][/tex]
Notice that our vector depends on only 3 variables, v₁, v₃, and v₄, so we can define our vector in a 3-dimensional space.
Then the correct option is c, the dimension of the vector space is 3.
I don't know how to do this. Please help
Answer:
63m³
Step-by-step explanation:
volume of a cylinder = πr²h
r = 2m, h = 5m
= 22/7 × 2² × 5
= 62.86m³
approx 63m³
What is the simplified form of the following expression? Assume x > 0.
3
2x
16x
2x
4/24x²
2x
4/2443
16x4
124²
Answer:
fourth root of 24 x cubed/16x to the power four
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Match the binomial quadratic expressions with their factored form.
Answer:
x²-36 and (x-6)(x+6)
9x-1 and(3x-1)(3x+1)
4x² -16 and 4(x-2)(x+2)
Step-by-step explanation:
when you multiply(x+6)(x-6)
you get x²-36,this is known as difference of two squares ie (a+b)(a-b)=(a²-b²)=0
x(x-6)+6(x-6)
x²-6x+6x-36
x² -36
the second the same explanation as the first
for the third, multiply (x+2)(x-2) it will give x²-4
then multiply this by 4 which is = 4x² - 16
prove:
sin²A-cos²B=sin²B-cos²A
Step-by-step explanation:
thwashm m GB DC GM 3hka it g feeds ygzdkzyzuzjz indin, mi, hn zbe
Answer:
Solution given:
L.H.S
sin²A-cos²B
we havesin²A=1-cos²A and Cos²B=1-sin²B
nowreplacing value
1-cos²A-(1-sin²B)
open bracket1-cos²A-1+sin²B
keep together like terms1-1+sin²B-Cos²A
=sin²B-Cos²A
R.H.S
proved.The age of Paul is 1/3 that of Kennedy. In four years time the age of Paul will be the same as Kennedy present age. How old is Paul now?
Answer:
Paul is 2 and Kennedy is 6
Step-by-step explanation:
6 × 1/3 = 2
2 + 4 =6
Express 8:28 in its simplest form
I NEED HELP PLEASE!!
Answer:
70
Step-by-step explanation:
70 because as the number of trials increase, the actual ratio of outcomes will converge on the expected ratio.
A tourist from Britain wants to exchange her British pounds for US dollar. She has 25 British pounds. How many US dollars would she get in exchange for her British pound if 1 British pound can be exchanged for 1.53 US dollars?
Answer:
$38.25 US dollars.
Step-by-step explanation:
25 / 1 = 25
To find the number of US dollars that can be exchanged for 25 British pounds, multiply 1.53 by 25 to get $38.25 US dollars.
Hope this helps!
if there is something wrong, just let me know.
The quadratic equation $ax^2+20x+c=0$ has exactly one solution. If $a+c=29$, and $a
Answer:
a² + c² = 641
Step-by-step explanation:
Given :-
ax² + 20x + c has exactly one solution .a + c = 29 .For exactly one Solution ,
b² - 4ac = 0 20² - 4*a*c = 0 4ac = 400 ac = 100Also ,
a + c = 29 ( a + c)² = 29²a² + c² + 2ac = 841 a² + c² + 2*100 = 841a²+ c² = 841 - 200 a² + c² = 641The area of the rectangle and square are equal find x.
Answer:
10 =x
Step-by-step explanation:
The area of the square is
A = s^2 where s is the side length
A = 6^2 = 36
The area of the rectangle is
A = l*w
A = 3(x+2) = 3x+6
We know the areas are equal
36 = 3x+6
Subtract 6 from each side
36-6 = 3x+6-6
30 = 3x
Divide by 3
30/3 = 3x/3
10 =x
Answer:
10
Step-by-step explanation:
Square area = b × h
SA = 6 × 6 = 36
The square's area equals 36.
Rectangle area = b × h
RA = 3 × (x + 2)
36 = 3(x + 2)
36 = 3x + 6
-6 -6
----------------
30 = 3x
---- ----
3 3
10 = x
The answer is 10.
Hope this helped.
Find the face value of the 20-year zero-coupon bond at 4.4%, compounded semiannually, with a price of $8,375.
$45.000
$53.000
The correct face value will be Option C ($20,000). A further solution id provided below.
Given:
Time,
t = 20 years
Rate,
r = 4.4%
Price
= $8,375
Now,
The yield will be:
= [tex]\frac{4.4}{2}[/tex]
= [tex]1.1[/tex] (%)
Time will be:
= [tex]20\times 2[/tex]
= [tex]40 \ periods[/tex]
As we know the formula,
⇒ [tex]Price \ of \ bond = \frac{Face \ value}{(1+\frac{r}{2} )^{n\times 2}}[/tex]
By substituting the values, we get
[tex]8375=\frac{Face \ value}{(1+\frac{0.044}{2} )^{20\times 2}}[/tex]
[tex]8375=\frac{Face \ value}{(1.022)^{40}}[/tex]
[tex]8375=\frac{Face \ value}{2.3880083}[/tex]
The face value will be:
[tex]Face \ value = 2.3880083\times 8375[/tex]
[tex]=20,000[/tex] ($)
Learn more about face value here:
https://brainly.com/question/14862802
PLEAZE HELPPPPPPPSPPSPAP
Answer:
Step-by-step explanation:
345ftyfthftyft.plk,k,
Answer:
Hello,
Anwser is C
Step-by-step explanation:
[tex]y=log_9(12x)\\\\9^y=12x\\\\9^x=12y\ inverting \ x \ and \ y \\\\y=\dfrac{9^x}{12} \\[/tex]
A study is conducted to compare the lengths of time required by men and women to assemble a certain product. Past experience indicates that the distribution of times for both men and women is approximately normal but the variance of the times for women is less than that for men. A random sample of times for 11 men and 14 women produced the following data:
Men:
n1= 11
s1= 6.1
Women:
n2= 14
s2= 5.3
Test the hypothesis that the variance for men is greater than for women. Use both p-value method and critical value approach.
Answer:
1.33 < 2.67 ; Fail to reject H0 at 0.05
Step-by-step explanation:
Given the data :
Men:
n1= 11
s1= 6.1
Women:
n2= 14
s2= 5.3
The hypothesis :
H0 : σ1² = σ2²
H1 : σ1² > σ2²
To calculate the test statistic ; we use th Ftest statistics ;
F statistic = Larger sample variance / Smaller sample variance
Fstatistic = s1² / s2² = 6.1² / 5.3² = 37.21/28.09 = 1.325
The F critical value at :
df numerator = n - 1 = 11 - 1 = 10
df denominator = n - 1 = 14 - 1 = 13
Using the F distribution table :
F critical = 2.671
Since
F statistic < F critical ; Fail to reject H0 at 0.05
We fail to reject the null hypothesis at significance level of H0 : s1² = s2²
For the men, we have:
n1= 11 s1= 6.1
For the women, we have:
n2= 14 s2= 5.3The null and the alternate hypotheses are:
Null hypothesis H0 : s1² = s2²Alternate hypothesis H1 : s1² > s2²
The numerator and the denominator degrees of freedom are calculated as:
[tex]\mathbf{df = n -1}[/tex]
So, we have:
[tex]\mathbf{df_1 = 11 -1}[/tex]
[tex]\mathbf{df_1 = 10}[/tex] ----- numerator
[tex]\mathbf{df_2 = 14 -1}[/tex]
[tex]\mathbf{df_2 = 13}[/tex] ----- denominator
The test statistic of the f test is:
[tex]\mathbf{t = \frac{s_1^2}{s_2^2}}[/tex]
So, we have:
[tex]\mathbf{t = \frac{6.1^2}{5.3^2}}[/tex]
[tex]\mathbf{t = \frac{37.21}{28.09}}[/tex]
[tex]\mathbf{t = 1.325}[/tex]
The critical values at [tex]\mathbf{t = 1.325}[/tex] and the degrees of freedom is:
[tex]\mathbf{F= 2.671}[/tex]
By comparison, 1.325 is less than 2.671.
Hence, we fail to reject the null hypothesis at H0 : s1² = s2²
Read more about hypothesis at:
https://brainly.com/question/23639322
Of the people surveyed, 1/4 watch Channel NineNews. What is this as a percentage?
A poll of 1,068 adult Americans reveals that 48% of the voters surveyed prefer the Democratic candidate for the presidency. At the 0.05 level of significance, test the claim that at least half of all voters prefer the Democrat.
a. Identify the null and alternative hypotheses.
b. Find the test statistic and P-value.
c. State the conclusion about the null hypothesis.
d. State the final conclusion that addresses the original claim.
Answer:
Step-by-step explanation:
H0 = .5 prefer Democratic candidate
Ha > .5 prefer Democratic candidate
p = .48
z = -1.285179129
0.9006 >= .05 thus we "FAIL TO REJECT THE NULL HYPOTHESES"
One rectangle is 12 in by 10 in
The second rectangle is 8 in by (X)
Using the similar shape concept, what is the missing value (x)?
Answer:
12/10 = 8/x
12x=80
x=6.666666
x=7
Step-by-step explanation:
Answer:
6.666667
Step-by-step explanation:
We can use a proportion to solve this problem:
12 : 8 = 10 : x
x = (8 * 10)/12 = 6.666667
Differentiate the following Functions
5x^2-2xy + 4y^3= 5
Answer:
[tex]\displaystyle y' = \frac{y - 5x}{x + 6y^2}[/tex]
General Formulas and Concepts:
Algebra I
Terms/CoefficientsFactoringCalculus
Differentiation
DerivativesDerivative NotationImplicit DifferentiationDerivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 5x^2 - 2xy + 4y^3 = 5[/tex]
Step 2: Differentiate
Implicit Differentiation: [tex]\displaystyle \frac{dy}{dx}[5x^2 - 2xy + 4y^3] = \frac{dy}{dx}[5][/tex]Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{dy}{dx}[5x^2] - \frac{dy}{dx}[2xy] + \frac{dy}{dx}[4y^3] = \frac{dy}{dx}[5][/tex]Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle 5\frac{dy}{dx}[x^2] - 2\frac{dy}{dx}[xy] + 4\frac{dy}{dx}[y^3] = \frac{dy}{dx}[5][/tex]Basic Power Rule [Chain Rule]: [tex]\displaystyle 10x - 2\frac{dy}{dx}[xy] + 12y^2y' = 0[/tex]Product Rule: [tex]\displaystyle 10x - 2\bigg[ \frac{dy}{dx}[x]y + x\frac{dy}{dx}[y] \bigg] + 12y^2y' = 0[/tex]Basic Power Rule [Chain Rule]: [tex]\displaystyle 10x - 2\bigg[ y + xy' \bigg] + 12y^2y' = 0[/tex]Simplify: [tex]\displaystyle 10x - 2y + 2xy' + 12y^2y' = 0[/tex]Isolate y' terms: [tex]\displaystyle 2xy' + 12y^2y' = 2y - 10x[/tex]Factor: [tex]\displaystyle y'(2x + 12y^2) = 2y - 10x[/tex]Isolate y': [tex]\displaystyle y' = \frac{2y - 10x}{2x + 12y^2}[/tex]Factor: [tex]\displaystyle y' = \frac{2(y - 5x)}{2(x + 6y^2)}[/tex]Simplify: [tex]\displaystyle y' = \frac{y - 5x}{x + 6y^2}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
Which graph has the solutions -1 and 4?
a.
On a coordinate plane, a parabola opens up and goes through (negative 4.2, 0) and (0, negative 1).
c.
On a coordinate plane, a parabola opens up and goes through (negative 4, 0) and (1, 0).
b.
On a coordinate plane, a parabola opens up and goes through (0, negative 3) and (4.5, 0).
d.
On a coordinate plane, a parabola opens up and goes through (0, negative 1) and (4, 0).
Please select the best answer from the choices provided
A
B
C
D
Answer:
graph d
in graph d, the line intersects the x axis twice at (-1,0) and (4,0), so those two are the solutions of the graph
Write as an algebraic expression and simplify if possible: A number four more than 45% of d.
Answer:
0.45d + 4
Step-by-step explanation:
45% of d => 0.45d
Then a number 4 more is gonna be 0.45d + 4
Please help with this qns
9514 1404 393
Answer:
$70
Step-by-step explanation:
Four relationships are given among four unknowns. Define the following variables: p, c -- the cost of a pie and a cake, respectively. q, d -- the number of pies and cakes, respectively.
q/d = 5/2 . . . . . the ratio of pies to cakes sold
pq +cd = 3780 . . . . revenue from the sales
p = c -35 . . . . . a pie is $35 less than a cake
cd = pq -420 . . . . revenue from cakes is $420 less than for pies
__
The equations are non-linear, so we're making up this process as we go along. We observe that 'pq' and 'cd' are involved in relations that give us their sum and difference, so these products are easily found. Their ratio can let us take advantage of our knowledge of q/d.
Substituting for cd in the second equation, we get ...
pq +(pq -420) = 3780
2pq = 4200
pq = 2100
cd = 2100 -420 = 1680
Now, we can write ...
pq/cd = 2100/1680 = 5/4
(p/c)(q/d) = 5/4 = (p/c)(5/2) . . . . substitute for q/d
p/c = 1/2 = (c -35)/c . . . . . . . . . . substitute for p
c = 2(c -35) . . . . multiply by 2c
c = 70 . . . . . . . . add 70-c
The cost of a cake is $70.
_____
Additional comment
24 cakes were sold at $70 each. 60 pies were sold at $35 each.
Which fraction is greater than the fraction represented by the model?
HURRY PLS IM BEING TIMED!!!!
Answer:
7/16
Step-by-step explanation:
7/16>3/8
It would be 7/16 because 3/8 is what is being shown. If you make them both have a common denominator then it would be 6/16.
a company has decreased the weight of its boxes of macaroni by 8 %. if the new weight of the box is 13.1ounces, what was the original weight of the box?
Answer:
실례합니다 ?
Step-by-step explanation:
이것이 무엇을 의미하는 질문입니까?
회사는 마카로니 상자의 무게를 8% 줄였습니다. 상자의 새 무게가 13.1온스인 경우 상자의 원래 무게는 얼마였습니까? 오른쪽 ?
Answer:
x*0.92 = 13.1
x = 14.24
Step-by-step explanation:
Laura makes a sound that 80.9 dB loud. Sarah makes a sound that is 3 time as intense. What is the loudness of Sarah's sound (in dB)
Answer:
242.7 dB
Step-by-step explanation: