Solve each absolute value equation
1. [n - 3]= 5

Answers

Answer 1

Answer:

n=8

n=-2

Step-by-step explanation:

or,n-3=5

or,n=5+3

or,n=8

Now consider,

or,n-3=-5

or,n=3-5

or,n=-2


Related Questions

Scores on a national English test are Normally distributed, with a mean score of 510 and a standard deviation of 75. Sixty-eight percent of English tests were less than which score, rounded to the nearest whole number?


A) 475

B) 529

C) 545

D) 561

Answers

Answer:

Should be (C). Can't verify.

545

ED2021

Max needs to paint a wall that is shaped like a square. He knows that the area of the wall is 75 ft2 . He needs to find the height of the wall. Find the height of the wall to the nearest tenth of a foot.

Answers

Answer:

8.7 feet

Step-by-step explanation:

Use the square area formula, a = s², where s is the side length of the square.

Plug in the area and solve for s:

a = s²

75 = s²

√75 = s

8.7 = s

So, to the nearest tenth of a foot, the height is 8.7 feet

Nancy left a bin outside in her garden to collect rain water. She notices the 1/2 gallon fills 2/3 of the bin. Write and solve an equation to find the amount of water that will fill the entire bin. Show your work. Explain your answer in words.

Answers

Here we want to solve a question involving fractions, we will find that:

3/4 gallon fils the complete bin.

Ok, so we know that 1/2 gallon of water, fills 2/3 of the bin.

We want to find the total amount of water that would fill the entire bin.

So we could write an equation like:

amount of water =  amount of the bin that it fills.

Then, using the above information, we have:

1/2 gal  = 2/3 of a bin

Now we want to get at 1 on the right side, this would mean "1 bin"

Then we multiply both sides by (3/2)

(3/2)*(1/2) gal = (3/2)*(2/3) of a bin

3/4 gal = 1 bin

From this, we can conclude that (3/4) gallons of water would fill the complete bin.

If you want to learn more about algebra, you can read:

https://brainly.com/question/4837080

x = 0,75 gallons      or       x  = 3/4   gallons      The volume of the bin

The volume of the bin is: In terms of a fraction

1  =  3/3      or any unitary fraction   5/5    7/7    9/9

We will take 3/3 since we have the information that 2/3 of the volume of the bin was filled with 2/3 of a gallon

If  2/3 of the volume of the bin was filled with 1/2 gallon then we make a rule of three according to:

If     0,5  gal.         fill    2/3 of the volume of the bin   then

          x   gal         fill     3/3  ( the volume of the bin)

solving

0,5 (gal) * 3/3    =   (2/3)*x       ( The equation)

0,5*3 = 2*x

x  =  (0,5*3)/2

x = 0,75 gallons      or       x  = 3/4   gallons

how long does it take for a deposit of $900 to double at 2% compounded continuously?
how many years does it take to double ? ___ years __ days

Answers

9514 1404 393

Answer:

34.6574 years34 years, 239.94 days

Step-by-step explanation:

For continuous compounding the "rule of 69" applies. That is the doubling time can be found from ...

  t = 69.3147/r . . . . where r is the interest rate in percent.

Here, r=2, so ...

  t = 69.3147/2 = 34.6574 . . . years

That's 34 years and 240 days.

Most of the heat loss for outdoor swimming pools is due to surface
evaporation. So, the greater the area of the surface of the pool, the greater
the heat loss. For a given perimeter, which surface shape would be more
efficient at retaining heat: a circle or a rectangle? Justify your answer.

Answers

Answer:

rectangle

Step-by-step explanation:

Perimeter of 20 feet

rectangle (square is technically a rectangle):

sides 5 and 5

5*5 = 25ft²

Circle:

20/(2π) = 3.18309...

3.1809...²π = 31.831ft²

Max area of rectangle (i.e. square) has a smaller area than a circle.

Using a profit P1 of $5,000, a profit P2 of $4,500, and a profit P3 of $4,000, calculate a 95% confidence interval for the mean profit per customer that SoftBus can expect to obtain. (Round your answers to one decimal place.) Lower Limit Upper Limit

Answers

Answer:

Confidence Interval

Lower Limit = $4,233.3

Upper Limit = $4,766.7

With 95% confidence, the mean profit per customer that SoftBus can expect to obtain is between $4,233.30 and $4,766.7 based on the given sample data.

Step-by-step explanation:

The z-score of 95% = 1.96

             Profit         Mean      Square Root

                          Difference    of MD

P1        $5,000       $500        $250,000

P2         4,500          0              0

P3         4,000       -500         $250,000

Total $13,500                        $500,000

Mean $4,500 ($13,500/3)    $166,667 ($500,000/3)

Standard Deviation = Square root of $166,667 = 408.2

Margin of error = (z-score * standard deviation)/n

= (1.96 * 408.2)/3

= 266.7

= $266.7

Confidence Interval = Sample mean +/- Margin of error

= $4,500 +/- 266.7

Lower Limit = $4,233.3 ($4,500 - $266.7)

Upper Limit = $4,766.7 ($4,500 + $266.7)

are ratios 2:3 and 8:12 equalvelent to eachother

Answers

Answer:

2:3 is equal to 8:12

Step-by-step explanation:

2:3

To get the first number to 8

8/2 = 4

Multiply by all terms 4

2*3 : 3*4

8:12

2:3 is equal to 8:12

8:12 = 8/12

= 2/3

= 2:3

Therefore 2:3 and 8:12 are equalent to each other.

Answered by Gauthmath must click thanks and mark brainliest

Rope pieces of lengths 45 cm, 75 cm and 81 cm have to be cut into same size pieces. What is the smallest piece length possible?​

Answers

Answer:

2025 cm

Step-by-step explanation:

Given the length of pieces - 45 cm, 75 cm and 81 cm

To find the length of the rope we have to find the L.C.M. of 45, 75 and 81 :

       

3  |  45, 75, 81

    | ________________      

3  |  15, 25, 27

    |________________

3  |    5, 25, 9

    |________________

3  |    5, 25, 3

    |________________

5  |    5, 25, 1

    |________________

5  |     1, 5, 1

    |________________

    |      1, 1, 1

     

L.C.M. = 3 × 3 × 3 × 3 × 5 × 5

= 2025 cm

So, the least length of the rope should be 2025 cm which can be cut into a whole number of pieces of length 45 cm, 75 cm and 81 cm.

A sailor on a trans-Pacific solo voyage notices one day that if he puts 625.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).
Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.


You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.

Answers

Answer:

can you say again please

An office manager has received a report from a consultant that includes a section on equipment replacement. The report indicates that scanners have a service life that is normally distributed with a mean of 41 months and a standard deviation of 4 months. On the basis of this information, determine the proportion of scanners that can be expected to fail within plus or minus 6 months of the mean. (Enter your answer as a percentage without the percent sign; keep 2 decimal places)

Answers

Answer:

The answer is "36.14%"

Step-by-step explanation:

The complete question is given in the attached file please find it.

[tex]\mu =41\\\\\sigma= 4\\\\P(42<\bar{x}<48)= p(\bar{x}<48)-p(\bar{x}<42)\\\\Z =\frac{(42-41)}{4} = \frac{1}{4} =0.25\\\\Z =\frac{(48-41)}{4} = \frac{7}{4} = 1.75\\\\[/tex]

Using z-table to find the value.

[tex]\to P(41<\bar{x}<48) = 0.9599- 0.5987 = 0.3614\times 100= 36.14\%[/tex]

This means that between 42 and 48 months, 36.14 % of scanners could be predicted will break down.

A rocket is launched at t = 0 seconds. Its height, in meters above sea-level, is given by the equation
h = -4.9t2 + 112t + 395.
At what time does the rocket hit the ground? The rocket hits the ground after how many seconds

Answers

Answer:

Step-by-step explanation:

In order to find out how long it takes for the rocket to hit the ground, we only need set that position equation equal to 0 (that's how high something is off the ground when it is sitting ON the ground) and factor to solve for t:

[tex]0=-4.9t^2+112t+395[/tex]

Factor that however you are factoring in class to get

t = -3.1 seconds and t = 25.9 seconds.

Since time can NEVER be negative, it takes the rocket approximately 26 seconds to hit the ground.

Lynbrook West, an apartment complex, has 100 two-bedroom units. The monthly profit (in dollars) realized from renting out x apartments is given by the following function. p(x)=-12x^2+2160x-59000 To maximize the monthly rental profit, how many units should be rented out? units What is the maximum monthly profit realizable?

Answers

Answer:

To maximize the monthly rental profit, 90 units should be rented out.

The maximum monthly profit realizable is $38,200.

Step-by-step explanation:

Vertex of a quadratic function:

Suppose we have a quadratic function in the following format:

[tex]f(x) = ax^{2} + bx + c[/tex]

It's vertex is the point [tex](x_{v}, y_{v})[/tex]

In which

[tex]x_{v} = -\frac{b}{2a}[/tex]

[tex]y_{v} = -\frac{\Delta}{4a}[/tex]

Where

[tex]\Delta = b^2-4ac[/tex]

If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].

In this question:

Quadratic equation with [tex]a = -12, b = 2160, c = -59000[/tex]

To maximize the monthly rental profit, how many units should be rented out?

This is the x-value of the vertex, so:

[tex]x_{v} = -\frac{b}{2a} = -\frac{2160}{2(-12)} = \frac{2160}{24} = 90[/tex]

To maximize the monthly rental profit, 90 units should be rented out.

What is the maximum monthly profit realizable?

This is p(90). So

[tex]p(90) = -12(90)^2 + 2160(90) - 59000 = 38200[/tex]

The maximum monthly profit realizable is $38,200.

A biologist was interested in determining whether sunflower seedlings treated with and an extract from Vinca minor roots resulted in a lower average height of sunflower seedlings that the standard height of 15.7 cm. The biologist treated a random sample of 33 seedlings with the extract and subsequently measured the height of those seedlings. At the 0.01 significance level, is there evidence that the true average height of the seedlings treated with an extract from Vinca minor roots is less than 15.7 cm?

Height
15.5
15.8
15.7
15.1
15.1
15.5
15.2
15.7
15.8
15.4
16.2
15.5
16.2
15.5
15.4
16.3
14.9
15.3
15.1
16.1
15.3
15.4
15.1
15.3
14.6
15.1
15.0
15.3
15.8
15.5
14.8
15.2
14.8

a. State the null and alternative hypotheses.
b. Report the value of the test statistic. Round answer to 2 decimal places. (Either calculate or use software such as minitab)
c. Using the p-value, do you reject the null hypothesis or fail to reject the null hypothesis? Explain your decision.
d. Based on your decision in part (c), write a conclusion within the context of the problem.

Answers

Answer:

Kindly check explanation

Step-by-step explanation:

H0 : μ = 15.7

H1 : μ < 15.7

This is a one sample t test :

Test statistic = (xbar - μ) ÷ (s/√(n))

n = sample size = 33

Using calculator :

The sample mean, xbar = 15.41

The sample standard deviation, s = 0.419

Test statistic = (15.41 - 15.70) ÷ (0.419/√(33))

Test statistic = - 3.976

Using the Pvalue calculator :

Degree of freedom, df = n - 1 ; 33 - 1 = 32

Pvalue(-3.976, 32) = 0.000187

Decison region :

Reject H0 if Pvalue < α

Since Pvalue < α ; we reject H0

There is significant evidence to conclude that the true average height of the seedlings treated with an extract from Vinca minor roots is less than 15.7 cm.

What is the equation of a line that passes through the point (1,8) and is perpendicular to the line whose equation is y=x/2+3?

Answers

Answer:

m=1/2

y-8=1/2(x-1)

y-8=1/2x-1/2

multiply through by 2

2y-16=x-1

2y-16+1-x=0

2y-15-x=0

2y-x-15=0

Hi,there,can you solve this equation.
4x*sqrt(2x-x²)=2x-1

Answers

Answer:

Step-by-step explanation:

4x*sqrt(2x-x²)=2x-1

sqrt(2x-x²)=(2x-1)/4x

2x-x² = 4x^2 -4x + 1 /(16x^2)

32x^3 - 16x^4 =  4x^2 -4x + 1

[tex]-16x^4+32x^3-4x^2+4x-1=0\\[/tex]

[tex]x = 1.92887[/tex]

A store is having a sale on chocolate chips and walnuts. For 8 pounds of chocolate chips and 3 pounds of walnuts, the total cost is $34. For 2 pounds of chocolate chips and 5 pounds of walnuts, the total cost is $17. Find the cost for each pound of chocolate chips and each pound of walnuts.

Answers

Answer:

chocolate chips are $2.00 per pound.

nd walnuts must be $3.50 per pound.

Step-by-step explanation:

Let x be the price of walnuts and y the price of chocolate chips.

2x + 5y = 17 (i)

8x + 3y = 34 (ii)

Multiply (i) by 4 to get

8x + 20y = 68

Subtract (ii) to get

 17y = 34

Dividing by 17, we see that chocolate chips are $2.00 per pound.

Substituting y=2 in (i) or (ii), walnuts must be $3.50 per pound.

I need help guys thanks so much

Answers

Answer: C

Step-by-step explanation:

If sin x = –0.1 and 270° < x < 360°, what is the value of x to the nearest degree?

Answers

Answer:

354°15'38.99''

Step-by-step explanation:

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

I need help
With these

Answers

Answer:

"A"

Step-by-step explanation:

a+b >c

a+c>b

b+c>a

~~~~~~~~~~~~

A. T,T,T

B. T,T,F

C. T,F,T

Which of the following theorems verifies that abc wxy

Answers

Answer:

C.    AA

Step-by-step explanation:

Since m<Y = 27°, then m<W = 27°.

We have two angles of one triangle (A and B) congruent to two angles of the other triangle (W and X).

Answer: C.   AA

find the area of the shaded regions. ANSWER IN PI FORM AND DO NOT I SAID DO NOT WRITE EXPLANATION

Answers

Answer: 18π

okokok gg

Step-by-step explanation:

Here angle is given in degree.We have convert it into radian.

[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]

radius r = 9 cm

Area of green shaded regions = A

[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]

Dogsled drivers, known as mushers, use several different breeds of dogs to pull their sleds. One proponent of Siberian Huskies believes that sleds pulled by Siberian Huskies are faster than sleds pulled by other breeds. He times 47 teams of Siberian Huskies on a particular short course, and they have a mean time of 5.2 minutes. The mean time on the same course for 39 teams of other breeds of sled dogs is 5.5 minutes. Assume that the times on this course have a population standard deviation of 1.4 minutes for teams of Siberian Huskies and 1.1 minutes for teams of other breeds of sled dogs. Let Population 1 be sleds pulled by Siberian Huskies and let Population 2 be sleds pulled by other breeds. Step 1 of 2 : Construct a 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs

Answers

Answer:

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.  

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Siberian Huskies:

Sample of 47, mean of 5.2 minutes, standard deviation of 1.4. So

[tex]\mu_1 = 5.2[/tex]

[tex]s_1 = \frac{1.4}{\sqrt{47}} = 0.2042[/tex]

Others:

Sample of 39, mean of 5.5 minutes, standard deviation of 1.1. So

[tex]\mu_2 = 5.5[/tex]

[tex]s_2 = \frac{1.1}{\sqrt{39}} = 0.1761[/tex]

Distribution of the difference:

[tex]\mu = \mu_1 - \mu_2 = 5.2 - 5.5 = -0.3[/tex]

[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.2042^2+0.1761^2} = 0.2692[/tex]

Confidence interval:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = zs[/tex]

In which s is the standard error. So

[tex]M = 1.96(0.2692) = 0.5276[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is -0.3 - 0.5276 = -0.8276.

The upper end of the interval is the sample mean added to M. So it is -0.3 + 0.5276 = 0.2276

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

You are offered two stocks. The beta of A is 1.4 while the beta of B is 0.8. The growth rates of earnings and dividends are 10% and 5%, respectively. The dividend yields are 5% and 7%, respectively.
Since A offers higher potential growth, should it be purchased?
Investments- Individual Work 2 Page 3
Since B offers a higher dividend yield, should it be purchased?
If the risk-free rate of return were 7% and the return on the market is expected to be 14%, which of these stocks should be bought?

Answers

Answer:

a) Yes , Cause The Expected Returns of stock A is Higher than that of B

b) No,  Cause The Expected Returns of stock B is Lower than that of A

Step-by-step explanation:

From the question we are told that:

Beta A \beta A=1.4

Beta B \beta B=0.8

Stock 1 Growth rates of earnings and dividends G_1=10\%

Stock 2 Growth rates of earnings and dividends  G_2=5\%

Stock 1  Dividend yields D_1=5\%

Stock 2 Dividend yields  D_2=7\%

Generally the equation for Expected Returns is mathematically given by

Expected Returns =Growth rates+Dividend yields

For Stock 1

Expected\ Returns =G_1+D_1

Expected\ Returns =5%+10%

Expected\ Returns =15%

For Stock 2

Expected\ Returns =G_2+D_2

Expected\ Returns =7%+5%

Expected\ Returns =12%

Therefore

a) Yes , Cause The Expected Returns of stock A is Higher than that of B

b) No,  Cause The Expected Returns of stock B is Lower than that of A

There is a sales tax of S6 on an item that costs 888 before tax. The sales tax on a second item is $21. How much does the second item cost before tax?

Answers

Step-by-step explanation:

before Tax

Coast = 888

in 2ND Item = $21

• 888/21

= $42.28

Which correlation best describes the data below. no correlation weak positive weak negative strong positive

Answers

There is no picture of the data

Jagroop is building a dock at his cottage. The length of the doc is 3 times the width, plus 2. Determine a simplified expression for the perimeter of the doc

Answers

Answer:

Step-by-step explanation:

Let length = y    width = x

y = 3x + 2

Perimeter = Sum of all sides (or sum of both lengths and both widths)

2y + 2x

2(3x + 2) + 2x

6x + 4 + 2x

8x + 4

You are dealt two cards successively without replacement from a standard deck of 52 playing cards. Find the probability that the first card is a two and the second card is a ten.

Answers

Answer:

[tex]\frac{4}{52} \times \frac{4}{51} = \frac{16}{2652} = 0.00603 = 0.603\%[/tex]

Step-by-step explanation:

There are 52 cards in a standard deck, and there are 4 suits for each card. Therefore there are 4 twos and 4 tens.

At first we have 52 cards to choose from, and we need to get 1 of the 4 twos, therefore the probability is just

[tex]\frac{4}{52}[/tex]

After we've chosen a two, we need to choose one of the 4 tens. But remember that we're now choosing out of a deck of just 51 cards, since one card was removed. Therefore the probability is

[tex]\frac{4}{51}[/tex]

Now to get the total probability we need to multiply the two probabilities together

[tex]\frac{4}{52} \times \frac{4}{51} = \frac{16}{2652} = 0.00603 = 0.603\%[/tex]

Which number line represents the solutions to 1-2x = 4?

Answers

Answer:

The third choice down

Step-by-step explanation:

|-2x| = 4

There are two solutions, one positive and one negative

-2x = 4  and -2x = -4

Divide by -2

-2x/-2 = 4/-2    -2x/-2 = -4/-2

x = -2   and x = 2

*20 points*
how do you get the weighted average from this table?

Answers

Answer:

it is

[(2+3+4+6)-2*4]:4=1.75

I THINK

Step-by-step explanation:

Other Questions
The entrance fee to a local waterpark is $34 per person. At the waterpark, you can rent a raft for $1.50 per hour. Which expression is equivalent to the amount it would cost Leah for h hours in the park if she rented a raft? People who get population education are also aware of health issues and environment education justify Define Artificial Intelligence(AI) in 5 sentence how is soda made? this includes sprite, coca cola, dr pepper, exd. hello anyone onlineanswer me TestSubreWhich of these graphs represents a function?12145-43-2-1,1 2 3 4 55-4-3--1:1 2 3 4234.55W.X.2-2-1,1 2 3 45-4-3-2-N 1 2 3 4 5-3.YA wB.. OD. ZarchORI99.a How manyAssume that the mean hecaht of soldiers is 166cmwith a standard deration of 8. cm.soldeers in a regiment of 1000 would you expect tobe over 177 cm tall. Son un par de rganos glandulares mixtos ubicados las bolsas escrotalesSeleccione una:A. TESTCULOB. PENEC. TROMPA DE FALOPIOD. PROSTATAE. OVARIO The area of a segment of a circle is the area of the corresponding sector of the circle _____ the area of the corresponding triangle. A point charge of +35 nC is above a point charge of 35 nC on a vertical line. The distance between the charges is 4.0 mm. What are the magnitude and direction of the dipole moment ? How many millibars of atmospheric pressure do we measure in a low pressure zones and a high-pressure zone What are the Strategies to Maintain a Healthy Sales Funnel? (1 point) There were 23.7 million licensed drivers in California in 2009 and 22.76 million in 2004. Find a formula for the number, N, of licensed drivers in the US as a function of t, the number of years since 2004, assuming growth is (a) Linear N(t) Which revision of the passage best uses the images to develop the main character? (1) Steve walked into the caf. (2) He smiled at the delicious smells floating in the air. (3) Feeling very hungry, he looked at the selection of sandwiches and salads in the display case. (4) He then chose a sandwich and paid the cashier. (5) He was ready for lunch 12 of 13 QUESTIONS Change sentence 4 to "He selected a sandwich and paid the cashier, who told him to have a good day" Change sentence 3 to "He stared at the snacks in the display case with the ferocious gaze of a hungry wolf." Change sentence 1 to "Steve went into the caf." Change sentence 2 to "The smell of coffee and fresh -The baked bread made him smile." On September 1, 2018, Drill Far Company purchased a tract of land for $2,300,000. The land is estimated to have a salvage value or $50,000, a useful life of four years, and contain an estimated 4,234,000 tons of iron ore. The company also purchased equipment to use in the extraction process that cost $220,450. The company plans to abandon the equipment when the ore is completely mined. During 2018, the company extracted and sold 1.25 million tons of ore. What is the depletion expense recorded for 2018 Write a program that accepts the lengths of three sides of a triangle as an input from the user: A, B, C Validate the user input so that the user can only enter positive values for sides A, B, C. All three must be true: A > 0 B > 0 C > 0 Jared works at a clothing store and is listening to a customer complain about a shirt he purchased that's damaged. Which behavior can Jared exhibit to show good communication skills with the customer? O a) Stopping the customer to quickly explain the store's return policy b) Repeating back what he has heard once the customer is done speaking Od Asking the customer how the shirt was damaged O d) Promising the customer a full refund even though it's against policy What might have made theRosenbergs seem dangerous to the US government of the 1950s? Both worked to create the first atomic bombs for the USSR. Both were connected to radicalgroups. Julius had worked for the VENONA project.O Ethel was a Russian immigrant who arrived after WWII. State the domain and range of the following function:{(- 3,4), (0,6), (2, - 2), (1, 3), (6, - 7), (3, 2)} please help in indices[tex] \frac{ {5}^{m + 2} - {5}^{m} }{ {5}^{m + 1} + {5}^{m} } \\ \\ \frac{ {4}^{m} + {4}^{m + 1} }{ {4}^{m + 2} - {4}^{m} } [/tex]