Answer:
E0
Explanation:
Yes. The "0" indicates that it is spherical
What is the right hand rule for magnetic Force?
Answer:
The right hand rule states that, to find the direction of the magnetic force on a positive moving charge, the thumb of the right hand point in the direction of v, the fingers in the direction of B, and the force (F) is directed perpendicular to the right hand palm.
Explanation:
pls mark brainliest
Hope this helps u
An astronaut on Pluto attaches a small brass ball to a 1.00-m length of string and makes a simple pendulum. She times 10 complete swings in a time of 257 seconds. From this measurement she calculates the acceleration due to gravity on Pluto. What is her result
Answer:
The acceleration due to gravity at Pluto is 0.0597 m/s^2.
Explanation:
Length, L = 1 m
10 oscillations in 257 seconds
Time period, T = 257/10 = 25.7 s
Let the acceleration due to gravity is g.
Use the formula of time period of simple pendulum
[tex]T = 2\pi\sqrt{\frac{L}{g}}\\\\25.7 = 2 \times 31.4\sqrt{\frac{1}{g}}\\\\g = 0.0597 m/s^2[/tex]
Define SI units. Also mention their importance. SI unit The
Answer:
SI unit is an internationally accepted system and have the same value all over the world .
I don't know the importance sotry
Answer:
SI unit is an internationally accepted system that have same value all over the world.
Two Carnot air conditioners, A and B, are removing heat from different rooms. The outside temperature is the same for both rooms, 314 K. The room serviced by unit A is kept at a temperature of 292 K, while the room serviced by unit B is kept at 298 K. The heat removed from either room is 4430 J. For both units, find (a), (b) the magnitude of the work required and (c), (d) the magnitude of the heat deposited outside for A and B conditioners respectively
Answer:
(a) 333.77 J
(b) 237.85 J
(c) 4763.77 J
(d) 4667.85 J
Explanation:
Temperature of source, TH = 314 K
Temperature of A, Tc = 292 K
Temperature of B, Tc' = 298 K
heat taken out, Qc = 4430 J
Let the heat deposited outside is QH and QH' by A and B respectively.
[tex]\frac{Q_H}{Q_c}=\frac{T_H}{T_c}\\\\Q_H = \frac{4430\times314}{292}=4763.77 J[/tex]
Now
[tex]\frac{Q_H'}{Q_c}=\frac{T_H}{T_c'}\\\\Q_H' = \frac{4430\times314}{298}=4667.85 J[/tex]
(a) Work done for A
W = QH - QC = 4763.77 - 4430 = 333.77 J
(b) Work done for B
W' = QH' - Qc = 4667.85 - 4430 = 237.85 J
(c) QH = 4763.77 J
(d) QH' = 4667.85 J
What comes before Action-reaction?
These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.
A particle makes 800 revolution in 4 minutes of a circle of 5cm. Find
i. it's period
ii. Angular Velocity
iii. Linear Velocity
iv. It's acceleration
PLEASE FORMULAE SHOULD BE WRITTEN CLEARLY.
YOU CAN SNAP AND SEND
Answer:
i) The period of the particle is 0.3 seconds
ii) The angular velocity is approximately 20.94 rad/s
iii) The linear velocity is approximately 1.047 m/s
iv) The centripetal acceleration is approximately 6.98 m/s²
Explanation:
The given parameters are;
The number of revolution of the particle, n = 800 revolution
The time it takes the particle to make 800 revolutions = 4 minutes
The dimension of the circle = 5 cm = 0.05 m
Given that the dimension of the circle is the radius of the circle, we have;
i) The period of the particle, T = The time to complete one revolution
T = 1/(The number of revolutions per second)
∴ T = 1/(800 rev/(4 min × 60 s/min)) = 3/10 s
The period, T = 3/10 seconds = 0.3 seconds
ii) The angular velocity, ω = Angle covered/(Time)
800 revolutions in 4 minutes = Angle of (800 × 2·π) in 4 minutes
∴ ω = (800 × 2·π)/(4 × 60) = 20·π/3
The angular velocity, ω = 20·π/3 rad/s ≈ 20.94 rad/s
iii) The linear velocity, v = r × ω
∴ The linear velocity, v = 0.05 m × 20·π/3 rad/s = π/3 m/s ≈ 1.047 m/s
iv) The centripetal acceleration, [tex]a_c[/tex] = v²/r
∴ The centripetal acceleration, [tex]a_c[/tex] = (π/3)²/(0.05) = 20·π/9
The centripetal acceleration, [tex]a_c[/tex] = 20·π/9 m/s² ≈ 6.98 m/s²
describe the forest ecosystem with examples
A forest ecosystem describes the community of plants, animals, microbes and all other organisms in interaction with the chemical and physical features of their environment: Specifically, a terrestrial environment dominated by trees growing in a closed canopy — a forest, in other words.
Hope this helps you buddy! :)
5. Tại sao khi lặn ta luôn cảm thấy tức ngực và càng lặn sâu thì cảm giác tức ngực càng tăng? A. Ap suất của nước giảm B. Ap suất không khí tăng C. Ap suất không khí giảm D. Ap suất của nước tăng
Answer:
c and d
Explanation:
obviously kksxsxksxkskxkskxksxksxsxsxsxsxsxsxs
A car and a truck collide in an intersection and the merged wreck continues along. During the collision. both kinetic energy and momentum are conserved.B. neither kinetic energy not momentum is conserved.C. momentum is conserved but not kinetic energy.D. kinetic energy is conserved but not momentum.E. conservation depends upon the details of the collision.
Answer:
C. Momentum is conserved but not kinetic energy.
Explanation:
This case represents an entirely inelastic collision, that is, a collision between the car and the truck that reduces total kinetic energy of the entire system, whereas linear momentum is conserved. Hence, correct answer is C.
A train travels 600 kilometers in 1 hour. What is the train's velocity in meters/second?
here's the answer to your question
Squids rely on jet propulsion to move around in water. A 1.5 kg squid at rest suddenly expels 0.12 kg of water backward to quickly get itself moving forward at 2.8 m/s. If other forces (such as the drag force on the squid) are ignored, what is the speed with which the squid expels water
Answer:
The speed of water is 32.2 m/s .
Explanation:
Mass of squid, M = 1.5 kg
mass of water, m = 0.12 kg
velocity of squid, V = - 2.8 m/s
Let the speed of water is v.
Use the conservation of momentum,
Momentum before expelling the water momentum after expelling water
M x 0 = (M - m) x V + m x v
0 = - (1.5 - 0.12) x 2.8 + 0.12 v
3.864 = 0.12 v
v = 32.2 m/s
what is the economic application of changes in states of matter
Answer:
Changes of state are physical changes in matter. They are reversible changes that do not change matter's chemical makeup or chemical properties. For example, when fog changes to water vapor, it is still water and can change back to liquid water again.
Turbine blades are rotated by the steam in the steam turbine.The water at the high temperature get converted into the steam used to rotate the turbine blades.
What is state?The property of any system on a specified point is known as the state of the system.Pressure,temperature are the properties of the system.
They are reversible modifications that do not alter the chemical composition or characteristics of matter.
The steam turbine blades are turned by the steam. The high-temperature water is turned to steam, which is utilized to rotate the turbine blades.
When fog transforms into water vapor, for example, it is still water and may transform back into liquid water.
Hence the steam turbine is the economic application of changes in states of matter.
To learn more about the state refer to the link;
https://brainly.com/question/15858706
#SPJ2
The needle in the following diagram rotates around a fixed point in the middle. Based on the information given, what way will the needle rotate when the current is applied?
Answer:
nods 40th anniversary rid off e 49en9 snns
Two rams run toward each other. One ram has a mass of 44 kg and runs south with a speed of 6 m/s, while the other has a mass of 50 kg and runs north with a speed of 3 m/s. What will the momentum of the system made up of the two rams be after they collide? Assume the total momentum of the system is conserved.
A. 114 kg-m/s south
B. 414 kg-m/s south
C. 414 kg m/s north
D. 114 kg-m/s north
Which of the following statements are true when it comes to impairment?
Answer:
Reduction in recoverable amount
Explanation:
Impairment of an asset happens when there is drastic reduction in recoverable amount of the asset. Long term assets are at risk of impairment because their carrying values may exceed the fair value. The business record it as a loss in assets value.
state physical quantity represented by the gradient of a displacement - time graph
Answer:
velocity
Explanation:
this is because velocity has both magnitude and direction
1. Una carga Q1 = + 12 μC se coloca a una distancia r = 0.024 m desde una carga Q2 = + 16 μC. a) Determina la magnitud de la fuerza electrostática que actúa sobre las dos cargas, Q1 y Q2. b) ¿Es la fuerza la atracción o repulsión? 2. Determina la intensidad del campo eléctrico a una distancia radial de r = 48 mm desde una carga de Q = 24 μC. 3. Una carga Q1 = 24 mC se coloca a una distancia r = 0.032 m desde una carga Q2 = - 12 μC. a. Determina la cantidad de energía potencial eléctrica que tiene la carga Q1. b. Determina el potencial eléctrico en la posición de Q2.
Answer:
1. a. 3,000 N
b. Repulsión
2. 46.875 × 10⁶ N/C
3. a. 81,000 J
b. 6.75 × 10⁹ V
Explanation:
1. Los parámetros dados son;
Q₁ = +12 μC, Q₂ = +16 μC
La distancia entre las cargas, r = 0.024
La magnitud de la fuerza electrostática, F, entre cargas se da como sigue;
[tex]F = k \times \dfrac{Q_1 \cdot Q_2}{r^2}[/tex]
Donde, k = constante de Coulomb = 9.0 × 10⁹ N · m² / C²
Por lo tanto, obtenemos;
F = 9.0 × 10⁹ × 12 × 10⁻⁶ × 16 × 10⁻⁶ / 0.024² = 3.000
La magnitud de la fuerza electrostática, entre las cargas, F = 3000 N
(b) Dado que tanto Q₁ como Q₂ son cargas positivas, y las cargas iguales se repelen entre sí, la fuerza es la repulsión.
2) La intensidad de un campo eléctrico, E, se da como sigue;
[tex]E = \dfrac{k \cdot Q}{r^2}[/tex]
La magnitud de la carga, Q = 24 μC
La distancia donde se mide el campo, r = 48 mm = 0.048 m
Por lo tanto, E = 9.0 × 10⁹ × 12 × 10⁻⁶ / 0.048² = 46,875,000 N / C
La intensidad de un campo eléctrico, E = 46,875,000 N / C = 46.875 × 10⁶ N / C
3. La magnitud de las cargas son;
Q₁ = 24 mC
Q₂ = -12 μC
La distancia entre las cargas, r = 0.032 m
un. El potencial eléctrico de una carga, [tex]U_E[/tex] , se da de la siguiente manera;
[tex]U_E = k \times \dfrac{Q_1 \cdot Q_2}{r}[/tex]
Por lo tanto;
[tex]U_E[/tex] = 9.0×10⁹ × 24 × 10⁻³ × (-12) × 10⁻⁶ /0.032 = -81,000
La energía potencial eléctrica entre la carga, Q₁ y Q₂= -81,000 J
b. El potencial eléctrico de Q₁ en Q₂, V₁ = [tex]k \times \dfrac{Q_1 }{r}[/tex]
Por lo tanto, V₁ = 9.0×10⁹ × 24 × 10⁻³/0.032 = 6.75 × 10⁹
El potencial eléctrico de Q₁ en Q₂, V₁ = 6.75 × 10⁹ V
The image shows a landform created by Earth’s forces.
A dip in a mountain range between two plates.
Which describes this landform?
anticline
shearing
syncline
tension
The term that best describes the landform "dip in a mountain range" is C. Syncline.
Syncline is a term to refer to a fold of the Earth's crust caused by the tectonic effects of the earth's dynamics. A synclinal fold is characterized by being a concave fold, that is, in the shape of a U.
According to the above, answers A, B and D are not correct options because they refer to different shapes of the Earth. Therefore, the landform shown is syncline.
Learn more at: https://brainly.com/question/17137827
Answer: C
Explanation: E2022
hai vật chuyển động ngược chiều qua A với B cùng lúc, ngược chiều để gặp nhau . Vật qua A có vận tốc 10m/s, qua B có vận tốc 15m/s. AB=100m
a, lấy trục tọa độ là đường thẳng AB, gốc tọa độ ở B , có chiều dương từ A sang B , gốc thời gian là lúc chúng cùng đi qua A và B . Lập phương trình chuyển động của hai xe
b, xác định vị trí , thời điểm 2 xe gặp nhau
c, xác định vị trí , thời điểm 2 xe cách nhau 25m
Answer:
wah wats this again
Explanation:
Bhai mujhe samaj nahi ah Raha
Kya Bolne Chahtaa hu tum
Answer:
bạn vẽ ra rồi làm
Explanation:
A spring has a spring constant of 5 N/m and is stretched 10 m. What its U,?
a. 50 J
b. 70 J
c. 90 J
d. 250 J
Answer
I am not sure but it is may be 50J
I hope that's, this answer is fine.
the power station uses some of its waste thermal energy to hear water for houses in a nearby town. State one problem of using waster energy in this way if the power station is far from town. Suggest a way of reducing this problem
Answer:
Explanation:
By the time the hot water gets to the place where it can be used for heating, it will have lost a great deal of energy to the surroundings.
The way to prevent that from happening is to insulate the pipeline with fiber glass like house insulation. Of course since this is a physics question and not an engineering problem, you could move the power station closer to the houses to be heated.
The use of Insulating Layers with low Conduction Coefficients and radii greater than Critical Radius diminish Losses and gives important Savings in terms of Energy Efficiency.
The main problem of Transportation of Waste Energy through Long Distances is the heat transfer between the Fluid flowing through the Tube and Surroundings. Heat Losses are directly proportional to the Distance travelled by the Fluid.
A possible way to minimize this Problem is to isolate outer surface of Tubes with materials with low Conduction Coefficients. at Critical Radius, in which Heat Losses reach its theoretical Maximum, from which Heat Transfer tends to diminish at greater radii.
According to the Theory of Heat Transfer, the Critical Radius of the Insulating Layer is equal to:
[tex]r_{c} = \frac{k}{h}[/tex] (1)
Where:
[tex]k[/tex] - Conduction coefficient, in watts per meter-Kelvin.[tex]h[/tex] - Convection coefficient, in watts per square meter-Kelvin.Using materials with low Conduction Coefficient minimize Thickness requirements and, therefore, overall costs tends to sink when [tex]r > r_{c}[/tex].
Hence, the use of Insulating Layers with low Conduction Coefficients and Radii greater than Critical Radius diminish Losses and gives important Savings in terms of Energy Efficiency.
Water falls down as a stream from a tap. Why does it not scatter?
Answer:
as it hits the ground it's dispersed and this causes it to move in different directions
Object A has a mass of 5 kg and a velocity of 6 m/s to the east while Object 1 point B has a mass of 12 kg and velocity 0.6 m/s also to the east. What is the momentum of the system? (Let east be positive)
help plss I got family
Answer:
Momentum of system = 37.2 Kgm/s.
Explanation:
Given the following data;
Mass A = 5 kgVelocity A = 6 m/sMass B = 12 kgVelocity B = 0.6 m/sTo find the momentum of the system;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
For object A;
Momentum A = 5 * 6
Momentum A = 30 Kgm/s
For object B;
Momentum B = 12 * 0.6
Momentum B = 7.2 Kgm/s
Next, we would determine the momentum of this system using the formula;
Momentum of system = Momentum A + Momentum B
Substituting the values into the formula, we have;
Momentum of system = 30 + 7.2
Momentum of system = 37.2 Kgm/s.
3.7 kg of a saturated water vapor at 0.4 MPa is isothermally cooled until it is a saturated liquid. Calculate the amount of heat rejected during this process in MJ. (Report your answer in 3 decimal places.)
Answer:
7.894 MJ
Explanation:
Given that:
The mass of the saturated water vapor = 3.7 kg
The pressure of the saturated water vapor = 0.4 MPa
From saturated properties of steam tables when the pressure is at 0.4 Mpa
The enthalpy in (kJ/kg);
hf = 604.7 kJ/kg
hg = 2738.1 kJ/kg
The rejected heat during this process is:
Q = m(hg - hf)
Q = 3.7(2738.1 - 604.7) kJ/kg
Q = 3.7(2133.4) kJ/kg
Q = 7893.58 kJ/kg
Q = 7.894 MJ
Plutonium-32 has a half-life of 14.2 days. After 99.4 days, how much of what was originally a 499.2 gram sample remains?
14 grams
3.9 grams
35.7 grams
0.71 grams
Answer:
3.9 gm remains
Explanation:
499.2 ( 1/2)^(99.4/14.2) = 3.9 gm
joule is a unit of_____and_____
Answer:
Energy and work
.........
Answer:
Work EnergyExplanation:
Joule is a unit of Work and energy .Hope my answer is helpful to you ✌️❣️☪️❇️☪️❣️✌️
A bullet of mass of 50g is moving with the velocity of 200km/h .calculate the kinetic energy of the bullet .
Answer:
is 10³
Explanation:
cuz the formula of KE is 1/2mv²
covert 50g to kg first then plug in the formula
1/2 × 0.05 × 200 = 10³ J
why do flames go upwards
Answer:
Easy search it on g o o g l e
Name the type of motion executed by the motion of the moon around the earth.
Answer:
The motion of the moon around the earth is circular motion
Explanation:
A 750 kg National Geographic Drone is rising vertically up into the atmosphere at constant speed. The lift force pushing it upward is 125% of its weight. The drone reaches the cruising speed almost immediately. It takes 25 seconds for the drone to reach a height of 250m starting from the surface.
a. What is the mechanical energy of the drone at the surface?
b. What is the mechanical energy of the drone at the 150 m height?
c. Is the mechanical energy of the drone conserved, increased, or decreased. Explain your choice.
d. What is the work done by each force acting on the drone?
Answer:
a. 0
b. 1.103625 MJ
c. Conserved
d. 1.103625/n MJ where n = The number of forces
Explanation:
The mass of the drone, m = 750 kg
The upward lift force = 125% of the weight of the drone
The time it takes the drone to reach a height of 250 m = 25 seconds
a. The mechanical energy = The kinetic energy + Potential energy
Therefore, given that the drone stars motion from the surface and was initially at rest, the mechanical energy at the surface = 0
b. The mechanical energy at height, h = 150 m, ME₁₅₀ = The potential energy gained = m·g·h
Where;
g = The acceleration due to gravity = 9.81 m/s²
∴ ME₁₅₀ = 750 kg × 9.81 m/s² × 150 m = 1103625 J = 1.103625 MJ
c. The mechanical energy is equivalent to the potential energy of the drone at the 150 m height, therefore, it is conserved
d. The work done by the force = The energy gained
Therefore, where there are n number of forces, the work done by each force = 1.103625/n MJ