A block with a mass of 0.26 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.2 N on the block. When the block is released, it oscillates with a frequency of 1.4 Hz. How far was the block pulled back before being released?

Answers

Answer 1

Answer:

2

Explanation:

pulling force because of it force

Answer 2

Answer:

5.9 cm

Explanation:

f: frequency of oscillation

frequency of oscillationk: spring constant

frequency of oscillationk: spring constantm: the mass

[tex]f = \frac{1}{2\pi} \sqrt{ \frac{k}{m} } [/tex]

in this problem we know,

F= 1.4 Hz

m= 0.26 kg

By re-arranging the formula we get

[tex]k = {(2\pi \: f )}^{2} m = {(2\pi(1.4hz))}^{2} 0.26kg = 20.1 \frac{n}{m} [/tex]

The restoring force of the spring is:

F= kx

where

F= 1.2 N

k= 20.1 N/m

x: the displacement of the block

[tex]x = \frac{f}{k} = \frac{1.2 \: n}{20.1 \frac{n}{m} } = 0.059m \: = 5.9 \: cm[/tex]


Related Questions

A 700N marine in basic training climbs a 10m vertical rope at constant speed in 8sec. what is power put ​

Answers

Answer:

875 Watts

Explanation:

P = W/t = mgh/t = 700(10)/8 = 875 Watts

Current is a measure of…

Answers

Current is a measure of an Electric current. It’s more then likely C. Hope this helps Good luck !!

At time t=0 a positively charged particle of mass m=3.57 g and charge q=9.12 µC is injected into the region of the uniform magnetic B=B k and electric E=−E k fields with the initial velocity v=v0 i. The magnitudes of the fields: B=0.18 T, E=278 V/m, and the initial speed v0=2.1 m/s are given. Find at what time t, the particle's speed would become equal to v(t)=3.78·v0:

Answers

Answer:

10.78 s

Explanation:

The force on the charge is computed by using the equation:

[tex]F^{\to}= qE^{\to} +q (v^{\to} + B^{\to}) \\ \\ F^{\to} = (9.12 \times 10^{-6}) *278 (-\hat k) +9.12 *10^{-6} *2.1 *0.18 (\hat i * \hat k) \\ \\ F^{\to} = -2.535 *10^{-3} \hat k -3.447*10^{-6} \hat j[/tex]

F = ma

[tex]a ^{\to}= \dfrac{F^{\to}}{m}[/tex]

[tex]a ^{\to}= \dfrac{-1}{3.57\times 10^{-3}}(2.535*10^{-3}\hat k + 3.447*10^{-6} \hat j)[/tex]

[tex]a ^{\to}=-0.710 \hat k -9.656*10^{-4} \hat j[/tex]

At time t(sec; the partiCle velocity becomes [tex]v(t) = 3.78 v_o[/tex]

The velocity of the charge after the time t(sec) is expressed by using the formula:

[tex]v^{\to}= v_{o \ \hat i} + a^{\to }t \\ \\ \implies (2.1)\hat i -0.710 t \hat k -9.656 \times 10^{-4} t \hat j = 3.78 v_o \\ \\ \implies (2.1)^2 +(0.710\ t)^2+ (9.656 *10^{-4}t )^2 = (3.78 *2.1^2 \\ \\ \implies 4.41 +0.5041 t^2 +9.324*10^{-7} t^2 = 63.012 \\ \\ \implies 4.41 +0.5041 t^2 = 63.012\\ \\ 0.5041t^2 = 63.012-4.41 \\ \\ t^2 = \dfrac{58.602}{0.5041} \\ \\ t^2 = 116.25 \\ \\ t = \sqrt{116.25} \\ \\ \mathbf{t = 10.78 \ s}[/tex]

A 2.5 kg block slides along a frictionless surface at 1.5 m/s.A second block, sliding at a faster 4.1 m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.5 m/s. What was the mass of the second block?

Answers

Answer:

1.5kg

Explanation:

Given data

mass m1= 2.5kg

mass m2=??

velocity of mass one v1= 1.5m/s

velocity of mass two v2= 4.1m/s

common velocity after impact v= 2.5m/s

Let us apply the formula for the conservation of linear momentum for inelastic collision

The expression is given as

m1v1+ m2v2= v(m1+m2)

substitute

2.5*1.5+ m2*4.1= 2.5(2.5+m2)

3.75+4.1m2= 6.25+2.5m2

collect like terms

3.75-6.25= 2.5m2-4.1m2

-2.5= -1.6m2

divide both sides by -1.6

m2= -2.5/-1.6

m2= 1.5 kg

Hence the second mass is 1.5kg

Identify the factors that affect the intensity of radiation detected from a radioactive source. Select one or more: The color of the source Type of emission from the source Distance of the detector from the source Type of materials between the source and the detector

Answers

The intensity of radiation is the defined as amount of energy per surface angle which can be used to determine the amount of energy emitting from a source that will hit another surface.

The factors that affect the intensity of radiation are

Type of emission from the source :This  can be alpha, gamma, beta or electromagnetic rays etc

Distance of the detector from the source: The shorter the distance between the source and the detector, the more the effect and vice versa for the longer the distance.

Type of materials between the source and the detector: The type of material between the source and the detector will tell how absorbing and penetrating the radiation is.

Read more on Radiation Intensity here:  https://brainly.com/question/10148635

Cho lực F ⃗=6x^3 i ⃗-4yj ⃗ tác dụng lên vật làm vật chuyển động từ A(-2,5) đến B(4,7). Vậy công của lực là:

Answers

The work done by [tex]\vec F[/tex] along the given path C from A to B is given by the line integral,

[tex]\displaystyle \int_C \mathbf F\cdot\mathrm d\mathbf r[/tex]

I assume the path itself is a line segment, which can be parameterized by

[tex]\vec r(t) = (1-t)(-2\,\vec\imath + 5\,\vec\jmath) + t(4\,\vec\imath+7\,\vec\jmath) \\\\ \vec r(t) = (6t-2)\,\vec\imath+(2t+5)\,\vec\jmath \\\\ \vec r(t) = x(t)\,\vec\imath + y(t)\,\vec\jmath[/tex]

with 0 ≤ t ≤ 1. Then the work performed by F along C is

[tex]\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}[/tex]

In part B of the lab, when the current flows through the orange part of the wire from right to left, the wire deflects (or moves) ____. This is in accordance with the right-hand-rule.

Answers

This seems to be incomplete, as we do not have any information about the magnetic field surrounding the wire, but we can answer in a general way.

We know that for a wire of length L, with a current I, and in a magnetic field B, the force can be written as:

F = L*(IxB)

if we define the right as the positive x-axis, and knowing that the current flows to the right, we can write:

I = i*(1, 0, 0)

And the field will be some random vector that can't be parallel to the current because in that case, we do not have any force.

To find the direction of the force, which will tell us the direction in which the wire deflects or moves, first, we need to point with our thumb in the direction of the current, in this case, to the right.

Now, with the hand open, using the tip of our other fingers we point in the direction of the magnetic field.

For example, if the magnetic field is in the positive z-axis, we will point upwards.

Now the palm of our hand tells us in which direction the force is applied.

This is the right-hand rule.

For example, in the case that the current goes to the right and the magnetic field is upwards, we could see that the force is to the front.

A 50-turn coil has a diameter of . The coil is placed in a spatially uniform magnetic field of magnitude so that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf, , induced in the coil if the magnetic field is reduced to zero unfiformly

Answers

Answer:

EMF = 51.01 Volt

Explanation:

A 50-turn coil has a diameter of 15 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.500~\text{T}0.500 T so that the plane of the coil makes an angle of 30^\circ30 ​∘ ​​ with the magnetic field. Find the magnitude of the emf induced in the coil if the magnetic field is reduced to zero uniformly in 0.100~\text{s}0.100 s

We have,

Number of turn in the coil, N = 50

The diameter of the coil, d = 15 cm

Radius, r = 7.5 cm = 0.075 m

Initial magnetic field, [tex]B_i=0.5\ T[/tex]

The plane of the coil makes an angle of 30° with the magnetic field.

The magnetic field reduced to zero in 0.1 seconds

We need to find the emf induced in the coil. We know that, emf is equal to the rate of change of magnetic flux. So,

[tex]\epsilon=\dfrac{BNA\cos\theta}{t}\\\\\epsilon=\dfrac{0.5\times 50\times \pi \times 0.075\cos(30)}{0.1}\\\\\epsilon=51.01\ V[/tex]

So, the induced emf in the coil is 51.01 V.

Katie swings a ball around her head at constant speed in a horizontal circle with circumference 2.1 m. What is the work done on the ball by the 34.4 N tension force in the string during one half-revolution of the ball

Answers

Answer:

the work done on the ball is 0

Explanation:

Given the data in the question;

Katie swings a ball around her head at constant speed in a horizontal circle with circumference 2.1 m.

circle circumference = 2πr = 2.1 m

radius r will be; r = 2.1 m / 2π = 0.33 m

Tension force = 34.4 N

one half revolution means, displacement of the ball is;

d = 2r = 2 × 0.33 = 0.66 m

Now, Work done = force × displacement × cosθ

we know that, the angle between the tension force on string and displacement of object is always 90.

so we substitute

Work done = 34.4 N × 0.66 m × cos(90)

Work done = 34.4 N × 0.66 m × 0

Work done = 0 J

Therefore,  the work done on the ball is 0

Two charged objects attract each other with a force 1.0 N. What happens to the force between them if one charge is increased by a factor of 2, the other charge is increased by a factor of 4, and the separation distance between their centers is reduced to 1/4 its original value

Answers

Answer:

F' = 128 N

Explanation:

The electrostatic force of attraction between two charges is given by Colomb's Law, as follows:

[tex]F = \frac{kq_1q_2}{r^2}\\\\[/tex]

where,

F = Force of attraction = 1 N

G = universal gravitational constant

q₁ = magnitude of the first charge

q₂ = magnitude of the second charge

r = distance between charges

Therefore,

[tex]1\ N = \frac{kq_1q_2}{r^2}[/tex] --------------------- eq(1)

Now, we apply the changes given in the question:

[tex]F' = \frac{k(2q_1)(4q_2)}{(\frac{1}{4}r)^2}\\\\F' = 128(\frac{kq_1q_2}{r^2})[/tex]

using eq (1):

F' = 128(1 N)

F' = 128 N

Two harmonic sound waves reach an overseveer simulatenouslt. the obsever hears the sound intensity rise and fall with a time of 0.2 between the maximmu intensity and the successing minimum intensity. What is the difference in frequency of the two sound waves?

Answers

Answer:

[tex]dF=2.5Hz[/tex]

Explanation:

From the question we are told that:

Time [tex]T=0.2sec[/tex]

Generally the Period is given as

 [tex]T= 2 * 0.2 = 0.4[/tex]

Therefore difference in frequency dF

 [tex]dF=\frac{1}{T}[/tex]

 [tex]dF=\frac{1}{0.4}[/tex]

 [tex]dF=2.5Hz[/tex]

A cylindrical 5.00-kg reel with a radius of 0.600 m and a frictionless axle, starts from rest and speeds up uniformly as a 3.00-kg bucket falls into a well, making a light rope unwind from the reel. The bucket starts from rest and falls for 4.00 s.

Required:
a. What is the linear acceleration of the falling bucket?
b. How far does it drop?
c. What is the angular acceleration of the reel?

Answers

I think the answer is C

A light bulb, attached (by itself) to an ideal 10 V battery, becomes hotter as time goes on. The bulb's filament is made of tungsten, a metal, which becomes more resistive as its temperature increases. Which statement below is true?

a. As time goes on and the bulb grows hotter, the voltage across the bulb increases so the bulb would grow brighter.
b. As time goes on and the bulb grows hotter, the current through the bulb increases so the bulb would grow brighter.
c. As time goes on and the bulb grows hotter, the voltage across the bulb decreases so the bulb would grow dimmer.
d. As time goes on and the bulb grows hotter, the current through the bulb decreases so the bulb would grow dimmer.

Answers

Answer:

the correct one is d

Explanation:

The filament of the bulb fulfills the law of ohm

          V = i R

indicate that the filament resistance increases with temperature, as the voltage remains constant if the resistance of the filament increases the current should decrease,

When examining the different statements, the correct one is d

CHEGG Over the course of a multi-stage 4820-km bicycle race, the front wheel of an athlete's bicycle makes 2.40x106 revolutions. How many revolutions would the wheel have made during the race if its radius had been 1.4 cm larger?

Answers

Answer:

θ' =  14.44 × [tex]10^{6}[/tex]

Explanation:

given data

total distance is d = 4820

radius = 1.4 cm

solution

we get here total angle by which the wheel rotates traveling is express as

⇒  [tex]\theta=2.40\times10^6\ \rm{rev}=2.40\times 2\pi\times10^6\ \rm{rad}[/tex]     ................1

and

total angle (θ)  and the total distance (d) express as

⇒ d = r × θ       ...............2

here r is radius

and here rotated through some other angle θ' so put value in given equation and find revolutions    

⇒  d = (r+r)θ'      ........3

here  r = d/θ

so

⇒ [tex]d = ( \frac{d}{\theta}+r) \theta'[/tex]    

so put value and get θ'

⇒  θ' = 2.40 × 2π × [tex]10^{6}[/tex] × [tex]\frac{4820 \times 10^3}{4820 \times 10^3 +0.014 \times 2.40 \times 2 \times \pi \times 10^6}[/tex]  

⇒  θ' =  14.44 × [tex]10^{6}[/tex] rev

A nearsighted person has a near point of 50 cmcm and a far point of 100 cmcm. Part A What power lens is necessary to correct this person's vision to allow her to see distant objects

Answers

Answer:

P = -1 D

Explanation:

For this exercise we must use the equation of the constructor

       / f = 1 / p + 1 / q

where f is the focal length, p and q is the distance to the object and the image, respectively

The far view point is at p =∞  and its image must be at q = -100 cm = 1 m, the negative sign is because the image is on the same side as the image  

        [tex]\frac{1}{f} = \frac{1}{infinity} + \frac{1}{-1}[/tex]

         f = 1 m

         P = 1/f

          P = -1 D

a cell phone is released from the top with the speed of 10ms what is the speed 3s after?

Answers

Answer:

30ms

Explanation:

you need to multiple the 10ms by 3s which gives you 30ms

Air contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m3, is stirred until its temperature is 500 K. Assuming the ideal gas model, for the air, and ignoring kinetic and potential energy, determine

Answers

Answer:

The final pressure in bar will be "[tex]\frac{10}{3} \ Bar[/tex]".

Explanation:

As we know,

PV = nRT

[tex]\frac{P_1}{T_1} =\frac{P_2}{T_2} =CONST[/tex]

then,

⇒ [tex]\frac{2 \ bar}{300 \ K} = \frac{P_2}{500 \ K}[/tex]

⇒ [tex]P_2=(\frac{2}{300}\times 500 )Bar[/tex]

        [tex]=\frac{10}{3} \ Bar[/tex]

Thus the above is the correct answer.

The spectral lines of two stars in a particular eclipsing binary system shift back and forth with a period of 6 months. The lines of both stars shift by equal amounts, and the amount of the Doppler shift indicates that each star has an orbital speed of 64,000 m/s. What are the masses of the two stars

Answers

Answer:

the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg

Explanation:

Given the data in the question;

Time period = 6 months = 1.577 × 10⁷ s

orbital speed v = 64000 m/s

since its a circular orbit,

v = 2πr / T

we solve for r

r = vT/ 2π

r = ( 64000 × 1.577 × 10⁷ ) / 2π

r = 1.6063 × 10¹¹ m = ( (1.6063 × 10¹¹) / (1.496 × 10¹¹) )AU = 1.0737 AU

Now, from Kepler's law

T² = r³ / ( m₁ + m₂ )

T = 6 months = 0.5 years

we substitute

(0.5)² = (1.0737)³ / ( m₁ + m₂ )

0.25 = 1.2378 / ( m₁ + m₂ )

( m₁ + m₂ ) = 1.2378 / 0.25

( m₁ + m₂ ) = 4.9512

m₁ = m₂  = 4.9512 / 2 = 2.4756 solar mass

we know that solar mass = 1.989 × 10³⁰ kg

so

m₁ = m₂ = 2.4756 × 1.989 × 10³⁰ kg

m₁ = m₂ = 4.92 × 10³⁰ kg

Therefore, the masses of the two stars are; m₁ = m₂ = 4.92 × 10³⁰ kg

Astronaut Jill leaves Earth in a spaceship and is now traveling at a speed of 0.280c relative to an observer on Earth. When Jill left Earth, the spaceship was equipped with all kinds of scientific instruments, including a meter stick. Now that Jill is underway, how long does she measure the meter stick to be?
A) 0.280 m
B) 1.00 m
C) 0.960 m
D) 1.28 m
E) 1.04 m

Answers

(B) 1.00 m

Explanation:

Since the meter stick is traveling with Jill, it will have the same speed as she does so relative to Jill, the meter stick is stationary so its length remains 1.00 m as measured by her.

When astronaut Jill leaves Earth in a spaceship and is now traveling at a speed of 0.280c and measure the meter stick to be 1 meter. Hence, option B is correct.

What is length contraction?

Length contraction is defined as the phenomenon of the moving object being shorter than its appropriate length, measured in the object's rest frame.

When the object travels with the speed of light, the length of the object gets more contracted than its original length, relative to the observer. It is also known as the Lorentz-Fitgerald contraction.

Length contraction, L = L₀√(1-v²/c²), where L is the original length, L₀ is the contracted length. c² is known as the velocity of light. v² is the velocity of the speed of the object.

From the given,

speed of the spaceship = 0.280c      (c is the speed of the light)

Length contraction, L = L₀ √(1-v²/c²)

The stick also travels in the spaceship. Hence, the length of the meter stick does not change. It remains at its original length of one meter.  Thus, the ideal solution is option B.

To learn more about length contraction:

https://brainly.com/question/10272679

#SPJ2

A capacitor is connected to an ac generator that has a frequency of 3.2 kHz and produces a rms voltage of 2.0 V. The rms current in the capacitor is 28 mA. When the same capacitor is connected to a second ac generator that has a frequency of 4.7 kHz, the rms current in the capacitor is 70 mA. What rms voltage does the second generator produce

Answers

Answer:

The rms voltage of new generator is 3.4 V.

Explanation:

f = 3200 Hz

rms voltage, V = 2 V

rms current, i = 28 mA

Now

f' = 4700 Hz

rms current, i' = 70 mA

let the new rms voltage is V'.

[tex]i = \frac{V}{Xc} = V \times 2\pi fC....(1)\\\\i' = V' \times 2 \pi f' C..... (2)\\\\\frac{i}{i'} =\frac{V f}{V' f'}\\\\\frac{28}{70}=\frac{2\times 3200}{V'\times 4700}\\\\V' = 3.4 V[/tex]

If a proton and electron both move through the same displacement in an electric field, is the change in potential energy associated with the proton equal in magnitude and opposite in sign to the change in potential energy associated with the electron?

a. The magnitude of the change is smaller for the proton.
b. The magnitude of the change is larger for the proton.
c. The signs Of the two changes in potential energy are opposite.
d. They are equal in magnitude.
e. The signs of the two changes in potential energy are the same.

Answers

Answer: They are equal in magnitude.

- The signs of the two changes in potential energy are opposite

Explanation:

When the proton and electron both move through the same displacement in an electric field, the change in potential energy that is associated with the proton is equal in magnitude.

Also, it should be noted that the signs of the two changes in potential energy are opposite.

Cho dòng điện xoay chiều trong sản xuất và sinh hoạt ở nước ta có tần số f = 50Hz. Tính chu kỳ T và tần số góc ω?

Answers

Answer:

T = 1/f = 1/50(s)

ω = 2πf = 100π (rad/s)

(vote 5 sao nhó :3 )

9. From this lab, we learn that the electric field and electric potential depend on both, the magnitude of the source charge (q), and the distance from the source charge (r). If we were to increase the magnitude of our source charge from 1 nC to 5 nC, then the magnitudes of the electric field and electric potential would be ____.(you can test this on the animation by dragging five 1 nC charges on top of each other and measuring E and V at a distance of 1 m)

Answers

Answer:

the electric field and the electric potential increase 5 times

Explanation:

The electric field created by a point charge is

         E = k q / r²

in this case the charge changes from q₁ = 1 10⁺⁰ C to q₂ = 5 10⁻⁹ C

with the electric field is proportional to the charge

         E₅ = 5 E₁

the electrical power for a point charge is

         V = k q / r

as the electric power is proportional to the charge

         V₅ = 5 V₁

consequently both the electric field and the electric potential increase 5 times

The electric field and potential grow by 5 times.

An electric field is produced by a charged object:

[tex]\to E = \frac{k q}{r^2}\\\\[/tex]

In this situation, the charge shifts:

[tex]\to q_1 = 1 10^{\circ}\ C \\\\ \to q_2 = 5 \times 10^{-9}\ C[/tex]

so with electric field remaining proportional to the charge

[tex]\to E_5 = 5 E_1[/tex]

The electrical power consumed for a point charge:

 [tex]\to V = \frac{k q}{ r}[/tex]

since the electric power is related to the charge

[tex]\to V_5 = 5 V_1[/tex]

As a result, both the electric field as well as the electric potential increase by 5 times.

Learn more:

brainly.com/question/2017486

Susan is quite nearsighted; without her glasses, her far point is 34 cm and her near point is 17 cm . Her glasses allow her to view distant objects with her eye relaxed. With her glasses on, what is the closest object on which she can focus?

Answers

Answer:

[tex]u=34cm[/tex]

Explanation:

From the question we are told that:

Far point is [tex]V=34 cm[/tex]

Near point is [tex]u=17 cm[/tex]

Therefore

Focal Length

[tex]f=-34cm[/tex]

Generally the equation for the Lens is mathematically given by

[tex]\frac{1}{u}=\frac{1}{f}-\frac{1}{v}[/tex]

[tex]\frac{1}{u}=\frac{1}{-34}-\frac{1}{-17}[/tex]

[tex]u=34cm[/tex]

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is 60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle

Answers

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

a) The mass flow rate through the nozzle can be calculated with the following equation:

[tex] \dot{m_{i}} = \rho_{i} v_{i}A_{i} [/tex]

Where:

[tex]v_{i}[/tex]: is the initial velocity = 20 m/s

[tex]A_{i}[/tex]: is the inlet area of the nozzle = 60 cm²  

[tex]\rho_{i}[/tex]: is the density of entrance = 2.21 kg/m³

[tex] \dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s [/tex]  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

[tex] \rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f} [/tex]

[tex] 0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f} [/tex]

[tex] A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2} [/tex]

Therefore, the exit area of the nozzle is 23.6 cm².

You can find another example of mass flow rate here: https://brainly.com/question/13346498?referrer=searchResults

I hope it helps you!                                                                   

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

[tex]\dot m_{in} = \dot m_{out}[/tex] (1)

Where:

[tex]\dot m_{in}[/tex] - Inlet mass flow, in kilograms per second.

[tex]\dot m_{out}[/tex] - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex] (2)

Where:

[tex]\rho_{in}, \rho_{out}[/tex] - Air density at inlet and outlet, in kilograms per cubic meter.

[tex]A_{in}, A_{out}[/tex] - Inlet and outlet area, in square meters.

[tex]v_{in}, v_{out}[/tex] - Inlet and outlet velocity, in meters per second.

a) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex] and [tex]v_{in} = 20\,\frac{m}{s}[/tex], then the mass flow rate through the nozzle is:

[tex]\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}[/tex]

[tex]\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)[/tex]

[tex]\dot m = 0.265\,\frac{kg}{s}[/tex]

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex], [tex]v_{in} = 20\,\frac{m}{s}[/tex], [tex]\rho_{out} = 0.762\,\frac{kg}{m^{3}}[/tex] and [tex]v_{out} = 150\,\frac{m}{s}[/tex], then the exit area of the nozzle is:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex]

[tex]A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}[/tex]

[tex]A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}[/tex]

[tex]A_{out} = 2.320\times 10^{-3}\,m^{2}[/tex]

[tex]A_{out} = 23.202\,cm^{2}[/tex]

The exit area of the nozzle is 23.202 square centimeters.

A motorcyclist start from rest to reaches 6m/s with uniform acceleration for 3s what his acceleration?​

Answers

Answer:

[tex]\boxed {\boxed {\sf 2 \ m/s^2}}[/tex]

Explanation:

Acceleration is the rate of change in velocity with respect to time. It is calculated by dividing the change in velocity by the change in time. The formula is:

[tex]a= \frac{ \Delta v}{\Delta t}[/tex]         or          [tex]a= \frac{v_f-v_i}{\Delta t}[/tex]

The change in velocity is the difference between the initial velocity and the final velocity. The motorcycle starts at rest, or 0 meters per second and reaches 6 meters per second. The change in time is 3 seconds.

[tex]\bullet \ v_f= 6 \ m/s\\\bullet \ v_i= 0 \ m/s \\\bullet \ \Delta t = 3 \ s[/tex]

Substitute the values into the formula

[tex]a= \frac { 6 \ m/s - 0 m/s}{3 \ s}[/tex]

Solve the numerator.

[tex]a= \frac{6 \ m/s}{3 \ s}[/tex]

[tex]a= 2 \ m/s^2[/tex]

The motorcyclist's acceleration is 2 meters per second squared.

The kinetic theory of gases states that the kinetic energy of a gas is directly proportional to the temperature of the gas.

a. True
b. False

Answers

I think the answer is true

Answer:

true

Explanation:

The kinetic energy of a gas is directly proportional to the temperature of the gas.because temperature is the average kinetic energy of a substance

I hope this helps

Using the given temperature and pressures, determine: a) the diameter of the water scale model balloon (m), b) the weight of the scale model, c) the specific gravity of the buoyant material such that the model conditions will be similar to the full-scale balloon.

Answers

Complete Question

Complete Question is attached below

Answer:

a)  [tex]D=0.7[/tex]

b)  [tex]W=1787.5N[/tex]

c)  [tex]\rho'=998.19kg/m^3[/tex]  

Explanation:

From the question we are told that:

Hot air:

Temperature [tex]T_a=360K[/tex]

Pressure [tex]P_a=100kPa[/tex]

Distance [tex]d=12m[/tex]

Weight [tex]W=1400N[/tex]

Water:

Temperature [tex]T_w=300K[/tex]

Pressure [tex]P_w=100kPa[/tex]

Since we have The same Reynolds number

a)

Generally the equation for equal Reynolds number is mathematically given by

Re_{air}=Re_{water}

Therefore

[tex]\frac{\rho V D}{\mu_{air}}=\frac{p_{water}*V*D}{\mu_{water]}}[/tex]

[tex]\frac{100*12}{300*0.28*1.81*10^{-3}}}=\frac{998*D}{0.000890}[/tex]

[tex]D=0.7[/tex]

b)

Generally the equation for Weight of scale is mathematically given by

[tex]W=\rho*V*g[/tex]

[tex]W=998*\frac{4}{3}*\pi*0.35^3*9.81[/tex]

[tex]W=1787.5N[/tex]

c)

Generally the equation for Density of buoyant material is mathematically given by

[tex]\rho'=\frac{w}{g*V}[/tex]

[tex]\rho'=\frac{1781.5}{\frac{4}{3}*\pi*0.35^3*9.81}[/tex]

[tex]\rho'=998.19kg/m^3[/tex]

đổi đơn vị
42 ft2/hr to cm2/s

Answers

Answer:

X = 10.8387 cm²/s

Explanation:

In this exercise, you're required to convert a value from one unit to another.

Converting 42 ft²/hr to cm²/s;

Conversion:

1 ft² = 929.03 cm²

42 ft² = X cm²

Cross-multiplying, we have;

X = 42 * 929.03

X = 39019.26 cm²

Next, we would divide by time in seconds.

1 hour = 3600 seconds

X = 39019.26/3600

X = 10.8387 cm²/s

any four difference between speed and acceleration ​

Answers

Speed:

Measured in distance / timeIt tells the speed of a bodyIt is a scalar quantitySpeed is always positiveIt's unit is meter per second

Acceleration:

Measured in velocity / timeIt tells the change in the velocityImplied on change in a velocityIt is a vector quantityIt's unit is meter per second square

Other Questions
what are the examples of facultative carnivores? Atom A and Atom B have the same number of protons and neutrons, but they do not have the same number of electrons. ASAP One positive number is 2 more than twice another. Their product is 180.Step 2 of 2 : Find the numbers by solving the equation. A car covers a distance of 132 km. If each tires diameter is 42 cm, how many rotations does each tire make in covering this distance? which topic sentence best supports the following thesis statement 1. En mi fiesta de cumpleaos, yo no ___. apago las velas del pastel abro los regalos brindo por la feliz pareja mando las invitaciones Although she is tired, she still goes to school.->Tired .............. What is one way an ecosystem can be destroyed naturally. The perimeter of a rectangular parking lot is 318m. If the width of the parking lot is 61m what is the length 6 Have you _____? Theres blue paint in your hair! A been painting B painting C painted Using the reciprocal services method, which of the following equations represents the algebraic expressions for the two equations needed to capture the total costs of a Janitorial Department (J) that includes not only $500,000 of direct costs but also 20% of the Maintenance Department (M) cost and a Maintenance Department that includes not only $250,000 of direct costs but also 40% of the Janitorial Department? (Hint: This equation is derived from the two separate equations representing each department's costs.) Which formatting group would commonly be used for monetary figures?numbergeneralaccountingcurrency The math teacher and cheerleading coach have teamed up to help the students do better on their math test. The cheer coach, using dance move names for the positioning of their arms, yells out polynomial functions with different degrees.For each position the coach yells out, write the shape by describing the position of your left and right arm.a1. Constant Function:a2. Positive Linear Function:a3. Negative Linear Function:a4. Positive Quadratic Function:a5. Negative Quadratic Function:a6. Positive Cubic Function:a7. Negative Cubic Function:a8. Positive Quartic Function:a9. Negative Quartic Function:When it comes time to take the test not only do the students have to describe the shape of the polynomial function, you have to find the number of positive and negative real zeros, including complex. Use the equation below:[tex]f(x)=x^5-3x^4-5x^3+5x^2-6x+8[/tex]b. Identify all possible rational zeros.c. How many possible positive real zeros are there? How many possible negative real zeros? How many possible complex zeros?d. Graph the polynomial to approximate the zeros. What are the rational zeros? Use synthetic division to verify these are correct.e. Write the polynomial in factor form.f. What are the complex zeros? The incomplete work of a student to solve an equation is shown below:Step 1: 4x + 12 = 4Step 2: ?Step 3: x = 8 4Step 4: x = 2What is the missing Step 2? 4x = 8 4x = 16 4x = 16 4x = 8 Inacio Corporation uses the weighted-average method in its process costing system. Data concerning the first processing department for the most recent month are listed below: Beginning work in process inventory: Units in beginning work in process inventory 2,300 Materials costs $ 14,400 Conversion costs $ 6,500 Percent complete with respect to materials 75% Percent complete with respect to conversion 20% Units started into production during the month 11,000 Units transferred to the next department during the month 9,900 Materials costs added during the month $ 173,500 Conversion costs added during the month $ 243,500 Ending work in process inventory: Units in ending work in process inventory 3,400 Percent complete with respect to materials 90% Percent complete with respect to conversion 30% The cost per equivalent unit for materials for the month in the first processing department is closest to: Multiple Choice $12.21 $13.15 $11.90 $14.50 Which two things about the hawk are correct? A It was the hunter's favorite hawk. B It was the only pet the hunter had. C It was trained to hunt. D It was twice the size of most hawks. It was an unusual color. Suppose a group of people read an article on capital punishment. Prior to reading the article, 60% of the members of the group were opposed to capital punishment, while 40% of the members of the group were in favor of capital punishment. According to studies of human decision-making, which of the following is likely? a. The members of the group would elect a representative in favor of capital punishment. b. After reading the article, all members of the group are in favor of capital punishment. c. After reading the article, all members of the group oppose capital punishment. d. After reading the article, 60% of the members of the group are opposed and 40% of the members of the group are in favor of capital punishment. P =5000 T =2year R =7%find simple intreset See screenshot below A landowner embarked on an expedition into a remote jungle, leaving no means to communicate with him. Because property values suddenly began plummeting in the landowner's neighborhood, his son believed that it was imperative to sell his father's property before it became worthless. Having no way to speak to his father ahead of time, the son prepared a deed conveying the property to a buyer, but left the line for the buyer's name blank. He then signed his father's name on it as the grantor, and handed the deed to the buyer. The deed, however, did not include any language regarding the amount the father was to receive in exchange for the property. The buyer believed that the son was the owner of the property. When the father returned, he was happy that the property had been sold.If the buyer changed his mind and now wishes to have the conveyance set aside, which of the following would be his best argument?A. The deed was not valid because the rapidly declining property values amounted to extreme duress.B. The deed was not valid because the buyer was not identified in the writing.C. The deed was not valid because the consideration for the deed was not contained in the writing.D. The deed was not valid because the son signed it.