Answer:
356°C.
Explanation:
(1). The first step to the solution to this particular Question/problem is to determine the Biot number, and after that to check the equivalent value of the Biot number with plate constants.
That is, Biot number = (length × ∞)÷ thermal conductivity. Which gives us the answer as ∞. Therefore, the equivalent value of the ∞ on the plates constant = 1.2732 for A and 1.5708 for λ.
(2). The next thing to do is to determine the fourier number.
fourier number = [α = 97.1 × 10−6 m2/s × 15 s] ÷ (.05m)^2 = 0.5826.
(3). The next thing is to determine the temperature at the center plane after 15 s of heating.
The temperature at the center plane after 15 s of heating = 500°C [ 25°C - 500°C ] [1.2732] × e^(-1.5708)^2 ( 0.5826).
The temperature at the center plane after 15 s of heating = 356°C.
Velocity of a car traveling in a straight line increases from 0 m/s to 30 m/s in eight seconds what is the average acceleration of the car
Average acceleration is how much the car increases (on average) per second. So, since it increases by 30 m/s in 8 s, then dividing 30 by 8 will give you an average acceleration of 3.75 m/s^2 (remember that acceleration is ever increasing, so the unit is s^2, not just s)
PLEASE HELP! WILL MARK BRAINLIEST!
In this graphical representation of a vector, which direction is designated as positive?
a) horizontal
b) vertical
c) downward
d) upward
Answer:
D
Explanation:
when you try to find out if it is positive, the line goes from left to right, and in this question the line is going upward.
When jumping straight down, you can be seriously injured if you land stiff-legged. One way to avoid injury is to bend your knees upon landing to reduce the force of the impact. A 60.0-kg man just before contact with the ground has a speed of 4.18 m/s. (a) In a stiff-legged landing he comes to a halt in 1.00 ms. Find the magnitude of the average net force that acts on him during this time. (b) When he bends his knees, he comes to a halt in 0.245 s. Find the magnitude of the average net force now. (c) During the landing, the force of the ground on the man points upward, while the force due to gravity points downward. The average net force acting on the man includes both of these forces. Taking into account the directions of the forces, find the magnitude of the force applied by the ground on the man in part (b).
Answer:
a) The average force that acts on the man is [tex]2.508\times 10^{8}[/tex] newtons.
b) The average force that acts on the man is 1023.673 newtons.
c) The force of the ground on the man is 1612.093 newtons upwards.
Explanation:
a) After a careful reading of the statement we construct the following model by applying Impact Theorem, that is:
[tex]m\cdot \vec v_{A} + \vec F \cdot \Delta t = m\cdot \vec v_{B}[/tex] (Eq. 1)
Where:
[tex]m[/tex] - Mass of the man, measured in kilograms.
[tex]\vec v_{A}[/tex] - Initial velocity of the man, measured in meters per second.
[tex]\vec v_{B}[/tex] - Final velocity of the man, measured in meters per second.
[tex]\Delta t[/tex] - Impact time, measured in seconds.
[tex]\vec F[/tex] - Average net force, measured in newtons.
Now we proceed to clear average net force within expression:
[tex]\vec F \cdot \Delta t = m\cdot (\vec v_{B}-\vec v_{A})[/tex]
[tex]\vec F = \frac{m}{\Delta t}\cdot (\vec v_{B}-\vec v_{A})[/tex] (Eq. 2)
If we know that [tex]m = 60\,kg[/tex], [tex]\vec v_{A} = -4.18\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex], [tex]\vec v_{B} = 0\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex] and [tex]\Delta t = 1\times 10^{-6}\,s[/tex], we obtain the following vector:
[tex]\vec F = \frac{60\,kg}{1\times 10^{-6}\,s} \cdot (4.18\,\hat{j})\,\,\,\left[\frac{m}{s} \right][/tex]
[tex]\vec F = 2.508\times 10^{8}\,\hat{j}\,\,\,[N][/tex]
The average force that acts on the man is [tex]2.508\times 10^{8}[/tex] newtons.
(b) If we know that [tex]m = 60\,kg[/tex], [tex]\vec v_{A} = -4.18\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex], [tex]\vec v_{B} = 0\,\hat{j}\,\,\,\left[\frac{m}{s} \right][/tex] and [tex]\Delta t = 0.245\,s[/tex], we obtain the following vector:
[tex]\vec F = \frac{60\,kg}{0.245\,s} \cdot (4.18\,\hat{j})\,\,\,\left[\frac{m}{s} \right][/tex]
[tex]\vec F = 1023.673\,\hat{j}\,\,\,\left[N\right][/tex]
The average force that acts on the man is 1023.673 newtons.
(c) From Second Newton's Law we find the following equation of equilibrium:
[tex]\vec F = \vec N -\vec W[/tex] (Eq. 3)
Where:
[tex]\vec F[/tex] - Average force that acts on the man, measured in newtons.
[tex]\vec N[/tex] - Force of the ground on the man, measured in newtons.
[tex]\vec W[/tex] - Weight of the man, measured in newtons.
By applying the concept of weight, we expand the previous equation:
[tex]\vec F = \vec N -m\cdot \vec g[/tex] (Eq. 3b)
Where [tex]\vec g[/tex] is the gravitational acceleration, measured in meters per square second.
And then we clear the force of the ground on the man:
[tex]\vec N = \vec F +m\cdot \vec g[/tex] (Eq. 4)
If we get that [tex]\vec F = 1023.673\,\hat{j}\,\,\,\left[N\right][/tex], [tex]m = 60\,kg[/tex] and [tex]\vec g = 9.807\,\hat{j}\,\,\,\left[\frac{m}{s^{2}} \right][/tex], the average force is:
[tex]\vec N = 1023.673\,\hat{j}\,\,\,[N]+(60\,kg)\cdot (9.807\,\hat{j})\,\,\,\left[\frac{m}{s^{2}} \right][/tex]
[tex]\vec N = 1612.093\,\hat{j}\,\,\,\left[N\right][/tex]
The force of the ground on the man is 1612.093 newtons upwards.
sketch the graphs of intensity against wavelength for a black body radiations at temperatures 100k and 200k on the same axis
Black body radiation is a term used to describe radiation emitted by a hypothetical entity that completely absorbs all incident radiation. Black body radiation at temperatures of 100K and 200K on the same axis will exhibit a peak intensity at different wavelengths, with the 200K curve shifted to the left compared to the 100K curve.
What is Black body radiation?The electromagnetic radiation that a perfect black body (an object that absorbs all radiation falling on it and emits radiation at all frequencies) emits is known as black body radiation. It is a physics theoretical idea that explains how temperature and electromagnetic radiation are related.
Both the wavelength of the radiation and the temperature of the object affect how intense the radiation is. Planck's radiation law explains the relationship between intensity and wavelength.
The maximum intensity of radiation occurs in the infrared region at low temperatures at long wavelengths, such as 100K. When the temperature reaches 200K, the peak intensity shifts to shorter wavelengths in the visible range.
Therefore, Black body radiation at temperatures of 100K and 200K on the same axis will exhibit a peak intensity at different wavelengths, with the 200K curve shifted to the left compared to the 100K curve.
Learn more about Black body radiation, here:
https://brainly.com/question/10260243
#SPJ2
g A person exploring a deep cave system becomes injured and needs to be rescued. The fastest way to get them is to pull them straight up out of the cave through a small opening just overhead, using a motor-driven cable. The lift is performed in three stages, each of them 10 m in height (total of 30 meters to extract the person). In the first stage, the person is accelerated to a speed of 5 m/s. They are then lifted at constant speed of 5 m/s, then in the last stage they are slowly decelerated to zero speed. If the person weighs 80 kg, how much work is done in each stage
Answer:
1. W = 8848 J
2. W = 7848 J
3. W = 6848 J
Explanation:
The work (W) can be found using the following equation:
[tex] W = E_{k} + E_{p} [/tex]
Where: E(k) is the kinetic energy and E(p) is the potential energy
Now let's find the work for every stage.
Stage 1:
[tex] W = E_{k} + E_{p} = \frac{1}{2}mv^{2} + mgh [/tex]
Where: m is the mass, g is the gravity, h is the height, v is the speed
[tex] W = \frac{1}{2}mv^{2} + mgh = \frac{1}{2}80 kg*(5 m/s)^{2} + 80 kg*9.81 m/s^{2}*10 m = 8848 J [/tex]
Stage 2:
[tex] W = E_{k} + E_{p} = 0 + E_{p} [/tex]
The kinetic energy is equal to zero because the acceleration is constant.
[tex] W = E_{p} = mgh = 80 kg*9.81 m/s^{2}*10 m = 7848 J [/tex]
Stage 3:
[tex] W = E_{k} + E_{p} = \frac{1}{2}mv^{2} + mgh = -\frac{1}{2}80 kg*(5 m/s)^{2} + 80 kg*9.81 m/s^{2}*10 m = 6848 J [/tex]
I hope it helps you!
A small mailbag is released from a helicopter that is rising\ steadily at 2.32 m/s.
(a) After 5.00 s, what is the speed of the mailbag?
(b) How far is it below the helicopter?
(c) What are your answers to parts (a) and (b) if the helicopter is rising steadily at 2.32 m/s?
Given parameters:
Velocity of the helicopter = 2.32m/s
Time given = 5.00s
Unknown:
a. Speed of the mailbag after 5s
b. How far is the mail bag below the helicopter
Solution:
In this problem, we must apply the appropriate motion equation to solve.
For a;
v = u + gt
v is the velocity of the mail bag
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Notice that the initial velocity of the mail bag is 0;
V = 0 + 9.8 x 5 = 49m/s
For b;
Using;
h = ut + [tex]\frac{1}{2}[/tex] gt²
where u is 0;
h = [tex]\frac{1}{2}[/tex] x 9.8 x 5² = 122.5m
An airplane is traveling at 250 m/s in level flight. If the airplane is to make a change in direction, it must travel is a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal centripetal acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 15.0 degrees, then the radius of curvature of the curved path of the airplane is
Answer:
The radius of curvature of the curved path of the airplane is 23784.356 meters (23.784 kilometers).
Explanation:
We assume that airplane can be represented as a particle. The free body diagram of the vehicle is presented below as attachment, whose variables are:
[tex]W[/tex] - Weight of the airplane, measured in newtons.
[tex]F[/tex] - Lift, measured in newtons.
[tex]\theta[/tex] - Banking angle, measured in sexagesimal degrees.
The equations of equilibrium associated with the airplane are, respectively:
[tex]\Sigma F_{r} = F\cdot \sin \theta = m\cdot \frac{v^{2}}{R}[/tex] (Eq. 1)
[tex]\Sigma F_{z} = F\cdot \cos \theta - W = 0[/tex] (Eq. 2)
From (Eq. 2):
[tex]F = \frac{W}{\cos \theta}[/tex]
In (Eq. 1):
[tex]W\cdot \tan \theta = m\cdot \frac{v^{2}}{R}[/tex]
By using the definition of weight, we eliminate the mass of the airplane:
[tex]g\cdot \tan \theta = \frac{v^{2}}{R}[/tex]
Where:
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v[/tex] - Speed, measured in meters per second.
[tex]R[/tex] - Radius of curvature, measured in meters.
Lastly, we clear the radius of curvature with the expression:
[tex]R = \frac{v^{2}}{g\cdot \tan \theta}[/tex]
If we know that [tex]v = 250\,\frac{m}{s}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\theta = 15^{\circ}[/tex], the radius of curvature is:
[tex]R = \frac{\left(250\,\frac{m}{s} \right)^{2}}{\left(9.807\,\frac{m}{s^{2}} \right)\cdot \tan 15^{\circ}}[/tex]
[tex]R = 23784.356\,m[/tex]
The radius of curvature of the curved path of the airplane is 23784.356 meters (23.784 kilometers).
Part 2: Vertical Distance
1
do
2.942
d, = vertical distance
g = acceleration due to gravity (10m/s2)
t = time
How high was a brick dropped from if it falls in 2.5 seconds?
2.5 m
Ob
12.5 m
25 m
с
Od
31.25 m
Answer:
31.25m
Explanation:
Given parameters:
Acceleration due to gravity = 10m/s²
Time of drop = 2.5s
Unknown
Height of drop = ?
Solution:
To solve this problem, we must note that the brick was originally at rest. The appropriate motion equation to solve this is shown below;
H = ut + [tex]\frac{1}{2}[/tex]gt²
H is the height
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Input the parameters and solve;
H = 0 + [tex]\frac{1}{2}[/tex] x 10 x 2.5²
H = 31.25m
A block of wood mass 0.60kg is balanced on top of a vertical port 2.0m high. A 10gm bullet is fired horizontally into the block and the embedded bullet land at a 4.0m from the base of the port. Find the initial velocity of the bullet.
Answer:
Mass of bullet is m=0.01kg
Mass of the block is M=4kg
Coefficient=0.25,distance=20m
So, let the speed of the block just after the bullet embedded in it be V and v be the speed of bullet before striking the block,
By applying conservation of momentum,
mv=(m+M)V
V=
M+m
mv
Explanation:
please mark me as the brainliest answer and please follow me for more answers to your questions..
The initial velocity of the bullet is 382 m/s
The given parameters;
mass of the wood, m₁ = 0.6 kgheight of the port, h = 2mass of the bullet, m₂ = 10 g = 0.01 kghorizontal distance traveled by the bullet, x = 4 mApply the principle of conservation of mechanical energy;
The maximum potential energy of the bullet-wood system at the top of the port = maximum kinetic energy of the system at the base of the port.
[tex]K.E_{max} = P.E_{max}\\\\\frac{1}{2} mv_{max}^2 = mgh_{max}\\\\v^2_{max} = 2gh_{max}\\\\v_{max} = \sqrt{2gh_{max}} \\\\v_{max} = \sqrt{2\times 9.8\times 2} \\\\v_{max} = 6.26 \ m/s[/tex]
Apply the principle of conservation of linear momentum to determine the initial velocity of the bullet;
let the initial velocity of the bullet = u₂[tex]m_1u_1 + m_2u_2 = v(m_1 + m_2)\\\\0.6(0) + 0.01(u_2) = 6.26((0.6 + 0.01)\\\\0.01u_2 = 3.819\\\\u_2 = \frac{3.819}{0.01} \\\\u_2 = 381.9 \ \approx 382 \ m/s[/tex]
Thus, the initial velocity of the bullet is 382 m/s
Learn more here:https://brainly.com/question/24424291
*
An accurate description of a thing or an event.
Opinion
Inference
Hypothesis
Observation
Answer:
opinion
Explanation:
suppose you put some ice is put into a container of water at room temperature. For faster cooling, the ice should (i) be allowed to float naturally in the water or (ii) be pushed to the bottom of the container with a glass rod and held there. Explain your answer.
Answer:
i am just trying it could be wrong too i am not sure about it but according to me the ans is (1)let ice be allowed to float naturally in the water
Explanation:
if u put water in ice or ice in water the temperature of water decreases and then the process gets slower but if u allow to float it then the temperature of water and surrounding air decreases and the heat is lost from air and water both so here the heat is more than only just water here it allows both to give heat and in 2nd option the heat is only lost by water and gained by icehere it allows only water to give heat so the heat is less in surrounding of ice in water so more heat more faster the process therefore i think the 1st option is correct
Which phrase best describes the path of a light wave
A: parallel to the source
B:Perpendicular to the source
C:Straight away from the source
D:Spiraling around the force
Answer:
C
Explanation:
Straight away from the source
Answer:c
Explanation:
Straight away from the source
A particular car can go from rest to 90 km/h in 10 s. What is its acceleration? (Report your answer in km/h*s)
Answer: 9 km/h
Explanation:i’m pretty sure
Answer:
Well, it depends on the type of car but a regular car like a toyota 4x4 only goes at 5k/h if the car starts when complete rest
Find the force that must be exerted on the rod to maintain a constant current of 0.173 A in the resistor.
Complete Question
Find the force that must be exerted on the rod to maintain a constant current of 0.173 A in the resistor.
The figure below shows a zero-resistance rod sliding to the right on two zero-resistance rails separated by the distance L = 0.451 m . The rails are connected by a [tex]12.6 \Omega \ resistor[/tex], and the entire system is in a uniform magnetic field with a magnitude of 0.751 T .
The diagram illustrating this question is shown on the first uploaded image
Answer:
The value is [tex]F = 0.0586 \ N [/tex]
Explanation:
From the question we are told that
The current is [tex]I = 0.173 \ A[/tex]
The length of separation is [tex]L= 0.451 \ m[/tex]
The resistance is [tex]12.6 \Omega[/tex]
The magnetic field is [tex]B = 0.751\ T[/tex]
Generally the force is mathematically represented as
[tex]F = BIL sin (\theta )[/tex]
Given that the velocity is perpendicular to magnetic field then [tex]\theta = 90[/tex]
=> [tex]sin(90) = 1[/tex]
So
[tex]F = 0.751 *0.173 * 0.451 sin (\theta )[/tex]
[tex]F = 0.751 *0.173 * 0.451 * 1[/tex]
[tex]F = 0.0586 \ N [/tex]
how do Red Ants and squirrels depend on plants
You do 32 joules of work using a pair of scissors. The scissors do 25 joules of
work cutting a piece of fabric. What is the efficiency of the scissors?
Answer:
Efficiency = 65%
Explanation:
The formula of Efficiency applied to any circumstance is:
Efficiency = Useful Energy / Energy applied
Then replacing the values given its:
Efficiency = 25 J / 32 J
Efficiency = 0.65
0.65 written as percentage is 65%, then:
Efficiency = 65%
As you do 32 joules of work using a pair of scissors and the scissors do 25 joules of work cutting a piece of fabric, the efficiency of the scissors is 78.125%.
What is efficiency?
Efficiency is the proportion of work done by a machine or throughout a process to the overall amount of energy or heat used.
The ratio of usable output to total input can be used to objectively measure efficiency. The efficiency of the device is defined as the ratio of energy converted to a useable form to the original amount of energy supplied.
Mathematically,
efficiency of a machine = (work output/work input)×100%
Given parameters:
Input work to the pair of scissors= 32 joules.
Output work from the pair of scissors= 25 joules.
Hence,
The efficiency of a machine = (work output/work input)×100%
= ( 25 joule/32joule)×100%
= 78.125%
Learn more about efficiency here:
https://brainly.com/question/14502027
#SPJ2
In a totally inelastic collision between two equal masses, with one initially at rest, what fraction of the initial kinetic energy is lost
Answer:
50%
Explanation:
Assuming no external forces acting during the collision, total momentum must be conserved.As one of the mass was initially at rest, the initial momentum can be written as follows:[tex]p_{o} = m* v_{1o} (1)[/tex]
If the collision is totally inelastic, both masses must move as one after the collision, so we can write the following equation:[tex]p_{f} = (m+m)* v_{f} = 2*m*v_{f}[/tex] (2)As po = pf, we can solve for vf in terms of v1o, as follows:[tex]v_{f} =\frac{v_{1o}}{2}[/tex]
The initial kinetic energy will be:[tex]K_{1o} =\frac{1}{2} * m *v_{1o}^{2} (1)[/tex]
The final kinetic energy of both masses will be as follows:[tex]K_{f} =\frac{1}{2} * 2*m *(\frac{v_{1o}}{2}) ^{2} (2)[/tex]
Rearranging in (2) we get:[tex]K_{f} =\frac{1}{2} *m *v_{1o} ^{2} *\frac{1}{2} = \frac{K_{1o} }{2}[/tex]
So, the fraction of the initial kinetic energy lost is just the half of the initial value.
3 general relevant psychology related problems at present
Answer:
Explanation:
Scientific research conducted by psychologists, organized by topics here, can inform and guide those seeking help with issues that affect their professional lives, family relationships and emotional wellness.Tips for choosing a psychotherapist and answers to financial questions related to therapy.
When faced with important events (stressors) which are threatening or very hard to, psychological symptoms of stress include anxiety and tension, uncontrollable. In general, this refers to high levels of suspicion and mistrust, usually seen in this psychological condition is associated with acute physical sickness
plz mark as brainliest
PLS HELP THIS IS FOR AN EXAM!!!
How many exercises encompass stretching in the human body
A) eight
B) too many to count
C) that depends on each individual
D) none
Answer: (B) Too many to count
Explanation: Have a wonderful day everyone! :D
The exercises that encompasses stretching in the human body is : B) too many to count
Meaning of exerciseexercises can be defined as any activity that puts your muscle to work and helps burn calories in your body.
exercises are one of the keys to staying and living healthy.
exercises are of different types and forms and some encompasses stretching in the human body.
In conclusion, The exercises that encompasses stretching in the human body is too many to count
Learn more about exercises : https://brainly.com/question/1365564
#SPJ2
What role does the internet play in allowing us to share,inspire, and critique images that have been edited
Answer: However, the Internet takes digital photo manipulation.
Explanation: This discussion is not only limited to digital manipulation, but also includes .However, there was no way to take this image in a single exposure .
for which pair of objects would adding the same amount of eletrons to each object result in a decrease in a electrical force
Answer:
two positively charged objects
Explanation:
this is a Physical Education question
A scientist just learned that she will not receive enough money to complete her year-long study about the
relationship between certain diseases and the foods that people eat.
How can she best overcome this limitation?
conduct smaller studies for more than a one-year period
study only a very small group of people
conduct a study about something else
use data from a similar study and adjust it to fit her study
Please answer I need help
When faced with limited funding to complete a year-long study on the relationship between certain diseases and people's diets she can best overcome this by conduct smaller studies for more than a one-year period, study only a very small group of people, conduct a study about something else, use data from a similar study and adjust it to fit her study.
The correct answer would be all of the above.
There are several strategies the scientist can consider to overcome this limitation. Each option has its own advantages and potential drawbacks, so the scientist should carefully evaluate which approach aligns best with her research goals and available resources.
1. Conduct smaller studies for more than a one-year period: Instead of one large-scale study, the scientist can break down the research into smaller, more manageable studies. This approach allows for incremental progress, and findings from each smaller study can contribute to the overall understanding of the topic. By conducting multiple studies over an extended period, the scientist can still gather valuable data and draw meaningful conclusions.
2. Study only a very small group of people: Focusing on a small group of participants can reduce costs and streamline data collection and analysis. While the sample size may be limited, the scientist can still gain insights into the relationship between diseases and diet within this specific group. However, generalizing the findings to a larger population may be challenging due to the limited sample size.
3. Conduct a study about something else: If funding limitations prevent the scientist from conducting the intended study, she could consider redirecting her research efforts towards a related but more feasible topic. This allows her to leverage her expertise and resources while still generating valuable scientific knowledge.
4. Use data from a similar study and adjust it to fit her study: The scientist could explore existing datasets or previous studies that are relevant to her research question. By analyzing and adapting this data to fit her study's context, she can gain insights without incurring the costs and time associated with primary data collection. However, it is crucial to ensure that the adjusted data aligns with the specific objectives and parameters of her study.
Ultimately, the scientist should carefully assess the feasibility, potential impact, and trade-offs associated with each option. It may also be beneficial to seek guidance from peers, mentors, or funding agencies to explore alternative funding sources or collaborative opportunities that could support her research goals.
For more such information on: diseases
https://brainly.com/question/1479450
#SPJ8
What is the mass of a 5 kg bag of flour on the moon?
Answer:
mass = 5 [kg]
Explanation:
The difference between weight and mass should be clarified, the weight is equal to the product of the mass by the gravity of the place. While the mass will always be conserved regardless of the place, it will never change.
weight = mass * gravity of the place
}Therefore the mass is the same in the earth as in the moon
A barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer). On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion). (a) Determine the barometric pressure in psia. If the ambient temperature increased to 85oF and the barometric pressure did not change, (b) would the mercury column be longer, be shorter, or remain the same length
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
A net force of 500 newtons causes
an object to accelerate at a rate of
5.0 m/s2. What is the mass of the
object?
A - 100 kg
B - .20kg
C - 600 kg
D - 2500 kg
Answer:
The answer is option AExplanation:
To find the mass of an object given it's acceleration and the force acting on it we use the formula
[tex]mass = \frac{force}{acceleration} \\ [/tex]
From the question
force = 500 N
acceleration = 5.0 m/s²
We have
[tex]mass = \frac{500}{5} \\ [/tex]
We have the final answer as
100 kgHope this helps you
The Apollo Lunar Module was used to make the transition from the spacecraft to the Moon's surface and back. Consider a similar module for landing on the surface of Mars. Use conservation of mechanical energy to answer these questions. (a) As the lander is descending, if the pilot decides to shut down the engine when the lander is at a height of 1.8 m, (this may not be a safe height to shut down the engine) and the velocity of the lander (relative to the surface of the planet) is 1.2 m/s what will be velocity of the lander at impact
Answer:
v=6.05 m/s
Explanation:
Given that,
Th initial velocity of the lander, u = 1.2 m/s
The lander is at a height of 1.8 m, d = 1.8 m
We need to find the velocity of the lander at impact. It is a concept based on the conservation of mechanical energy. So,
[tex]\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2=W\\\\\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2=F\times d\\\\\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2=mgd\\\\\dfrac{1}{2}m(v^2-u^2)=mgd\\\\v^2-u^2=2gd[/tex]
v is the velocity of the lander at the impact
g is the acceleration due to gravity on the surface of Mars, which is 0.4 times that on the surface of the Earth, g = 0.4 × 9.8 = 3.92 m/s²
So,
[tex]v=\sqrt{u^2+2gd} \\\\v=\sqrt{(1.2)^2+2\times 9.8\times 1.8} \\\\v=6.05\ m/s[/tex]
So, the velocity of the lander at the impact is 6.05 m/s.
A 4kg object is at rest. How much force is required to get the object to a velocity of 20m/s in 2 seconds? (Show work and include units)
Explanation:
Answer:-The Object was at rest. So, Initial Velocity is Zero.
[Initial Velocity]u = 0[Final Velocity]v = 20 m/s[Time]t = 2 seconds Mass = 4kgForce = ?We know that:-
[tex]\sf{Force = Mass \times \dfrac{(v-u)}{t}}[/tex]
Applying it, we get:-
[tex]\sf{Force = 4 \times \dfrac{(20-0)}{2}}[/tex]
[tex]\sf{Force = 2 \times \dfrac{(20)}{2}}[/tex]
[tex]\sf{Force = 2 \times 10}[/tex]
[tex]\sf{Force = 20 \ N \ (Newton)}[/tex]
Hope it helps :)
What are tides?
O Circulation of water
O Glaciers melting causing rising water
O Wind pushing ocean water
O Rise and fall of the water level on the shore
Answer:
4th
Explanation:
Rise and fall of the water level on the sea shore
The speedometer of a car moving east reads 60 mph. It passes another car that travels west at 60 mph do the cars have the same velocity?
Answer:
no but yes at the same time
Explanation:
they are going a different direction but they are the same speed.